PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1830–o1831.
Published online 2010 June 26. doi:  10.1107/S1600536810024463
PMCID: PMC3006956

2,3-Dimethyl-6-nitro­quinoxaline

Abstract

The asymmetric unit of the title quinoxaline compound, C10H9N3O2, contains two crystallographically independent mol­ecules (A and B). The quinoxaline ring systems are essentially planar, with maximum deviations of 0.006 (1) and 0.017 (1) Å, respectively, for mol­ecules A and B. In mol­ecule A, the dihedral angle formed between the quinoxaline ring system and nitro group is 10.94 (3)° [6.31 (13)° for mol­ecule B]. In the crystal, mol­ecules are linked into chains propagating along [001]: one forms zigzag chains linked by C—H(...)O hydrogen bonds, whilst the other forms ladder-like chains by way of C—H(...)N and C—H(...)O hydrogen bonds. The packing is further consolidated by weak π–π inter­actions [range of centroid–centroid distances = 3.5895 (7)–3.6324 (7) Å].

Related literature

For general background to and applications of the title quinoxaline compound, see: Darabi et al. (2008 [triangle]). For the synthesis, see: Ajaikumar & Pandurangan (2009 [triangle]); Darabi et al. (2009 [triangle]). For related quinoxaline structures, see: Ghalib et al. (2010 [triangle]); Wozniak et al. (1993 [triangle]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1830-scheme1.jpg

Experimental

Crystal data

  • C10H9N3O2
  • M r = 203.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1830-efi1.jpg
  • a = 7.1125 (7) Å
  • b = 22.490 (2) Å
  • c = 12.9596 (10) Å
  • β = 115.026 (4)°
  • V = 1878.4 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.26 × 0.21 × 0.10 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.973, T max = 0.990
  • 52279 measured reflections
  • 7510 independent reflections
  • 5559 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.136
  • S = 1.03
  • 7510 reflections
  • 275 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024463/hb5504sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024463/hb5504Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RMG and SHM would like to acknowledge Universiti Sains Malaysia (USM) for the University Grant (No. 1001/PTEKIND/8140152). HKF and JHG thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

The direct condensation of various benzene-1,2-diamines with 1,2-dicarboxyl compounds has been successfully achieved in excellent yields using (NH4Cl-CH3OH) catalyst system at room temperature (Darabi et al., 2008). Here in this study our method comprises the synthesis of the title compound by the reaction of 4-nitro-o-phenylenediamine and butanedione in distilled water. The procedure can be performed for a broad scope of quinoxaline derivatives and is eco-friendly.

The asymmetric unit of the title quinoxaline compound comprises of two crystallographically independent 2,3-dimethyl-6-nitroquinoxaline molecules, designated molecules A and B (Fig. 1). The two independent molecules having closely similar geometries, as shown in the superposition of the non-H atoms of molecules A and B (Fig. 2) using XP in SHELXTL (Sheldrick, 2008), giving an r.m.s. deviation of 0.116 Å.

In each molecule, the quinoxaline ring system (C1-C8/N1/N2) is essentially planar, with maximum deviations of -0.006 (1) and -0.017 (1) Å, respectively, for atoms C1A of molecule A and C3B of molecule B. There are slight inclinations between the quinoxaline ring systems and nitro groups, as indicated by the dihedral angles formed of 10.94 (3) and 6.31 (13)°, respectively, for molecules A and B. The bond lengths and angles are comparable to those observed in the reported quinoxaline structures (Ghalib et al., 2010; Wozniak et al., 1993).

The interesting feature of the crystal packing (Fig. 3) is that no intermolecular hydrogen bond is observed between the two independent molecules and they are packed in different manners. Adjacent molecules A are linked by intermolecular C3A—H3A···N2A and C10A—H10A···O2A hydrogen bonds (Table 1) into ladder-like chains incorporating R22(13) ring motifs (Bernstein et al., 1995) whereas intermolecular C9B—H9D···O1B hydrogen bonds (Table 1) link adjacent molecules B into zig-zag shaped chains. Both chains are running along the [001] direction. Further consolidation of the crystal packing is provided by weak Cg1···Cg2 and Cg1···Cg3 interactions [Cg1···Cg2 = 3.5895 (7) Å, symmetry code: x, y, z; Cg1···Cg2 = 3.6324 (7) Å, symmetry code: x-1, y, z; Cg1···Cg3 = 3.6228 (7) Å, symmetry code: x, y, z; Cg1 and Cg2 are the centroids of the C2A–C7A and C2B–C7B benzene rings, respectively; Cg3 is the centroid of the C1B/N1B/C2B/C7B/N2B/C8B pyrazine ring].

Experimental

The title compound was synthesized as reported in the literatures (Darabi et al., 2009; Ajaikumar & Pandurangan, 2009). A mixture of 4-nitro-o-phenylenediamine (1.5310 g) and butanedione (0.8775 g) in molar ratio 1:1 were refluxed in distilled water for 1 h. The reaction mixture was dried on rota vapor at low pressure and then recrystallized with a 1:1 mixture of alcohol-chloroform to afford brownish crystals of the title compound (1.76 g, M.p. 406 K).

Refinement

All H atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model is applied to the methyl groups.

Figures

Fig. 1.
The molecular structure of (I) showing 30 % probability displacement ellipsoids for non-H atoms.
Fig. 2.
Fit of molecule A (dashed lines) on molecule B (solid lines). H atoms have been omitted for clarity.
Fig. 3.
The crystal structure of (I), viewed along the a axis, showing the molecules being linked into one-dimensional chains along the [001] direction. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C10H9N3O2F(000) = 848
Mr = 203.20Dx = 1.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9916 reflections
a = 7.1125 (7) Åθ = 3.4–33.5°
b = 22.490 (2) ŵ = 0.10 mm1
c = 12.9596 (10) ÅT = 100 K
β = 115.026 (4)°Block, brown
V = 1878.4 (3) Å30.26 × 0.21 × 0.10 mm
Z = 8

Data collection

Bruker APEXII DUO CCD diffractometer7510 independent reflections
Radiation source: fine-focus sealed tube5559 reflections with I > 2σ(I)
graphiteRint = 0.043
[var phi] and ω scansθmax = 33.8°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −10→11
Tmin = 0.973, Tmax = 0.990k = −35→35
52279 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.077P)2 + 0.2747P] where P = (Fo2 + 2Fc2)/3
7510 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A0.42483 (15)0.54231 (3)0.13432 (7)0.03320 (19)
O2A0.40149 (14)0.57864 (4)0.28272 (7)0.03070 (18)
N1A0.46872 (13)0.81176 (4)0.03295 (7)0.02043 (16)
N2A0.50093 (12)0.79631 (4)0.25642 (7)0.01853 (15)
N3A0.41730 (13)0.58434 (4)0.19278 (7)0.02205 (16)
C1A0.49512 (15)0.85691 (4)0.10172 (8)0.02068 (17)
C2A0.45607 (13)0.75638 (4)0.07370 (8)0.01702 (16)
C3A0.42621 (14)0.70659 (4)0.00252 (8)0.01940 (17)
H3A0.41600.7116−0.07090.023*
C4A0.41210 (14)0.65075 (4)0.04132 (8)0.01985 (17)
H4A0.39150.6177−0.00530.024*
C5A0.42934 (14)0.64452 (4)0.15257 (8)0.01822 (16)
C6A0.45822 (14)0.69133 (4)0.22529 (8)0.01792 (16)
H6A0.46860.68550.29850.022*
C7A0.47173 (13)0.74866 (4)0.18519 (7)0.01652 (15)
C8A0.51266 (14)0.84900 (4)0.21625 (8)0.01909 (16)
C9A0.54442 (18)0.90164 (5)0.29221 (9)0.0257 (2)
H9A0.56500.88840.36670.039*
H9B0.42440.92690.26130.039*
H9C0.66420.92340.29750.039*
C10A0.5085 (2)0.91790 (5)0.05931 (10)0.0309 (2)
H10A0.48900.9156−0.01860.046*
H10B0.64250.93460.10490.046*
H10C0.40270.94260.06430.046*
O1B1.02498 (14)0.88142 (4)0.11899 (7)0.03279 (18)
O2B1.01367 (14)0.86371 (3)0.28010 (7)0.03235 (18)
N1B0.91353 (13)0.60539 (4)0.08423 (7)0.02072 (15)
N2B0.96057 (12)0.64557 (4)0.30076 (7)0.01937 (15)
N3B1.00834 (13)0.84739 (4)0.18868 (8)0.02304 (17)
C1B0.91658 (15)0.56851 (4)0.16330 (8)0.02119 (17)
C2B0.93380 (13)0.66464 (4)0.11081 (8)0.01795 (16)
C3B0.92863 (15)0.70603 (4)0.02753 (8)0.02017 (17)
H3B0.90910.6928−0.04430.024*
C4B0.95218 (14)0.76554 (4)0.05198 (8)0.02043 (17)
H4B0.94960.7930−0.00220.025*
C5B0.98036 (14)0.78392 (4)0.16108 (8)0.01887 (16)
C6B0.98399 (14)0.74548 (4)0.24403 (8)0.01843 (16)
H6B1.00230.75950.31520.022*
C7B0.95944 (13)0.68435 (4)0.21894 (8)0.01721 (16)
C8B0.93904 (15)0.58899 (4)0.27364 (8)0.02046 (17)
C9B0.93881 (19)0.54547 (5)0.36108 (9)0.0285 (2)
H9D0.95540.56640.42890.043*
H9E1.05120.51790.37860.043*
H9F0.80970.52420.33180.043*
C10B0.8977 (2)0.50367 (5)0.13618 (11)0.0306 (2)
H10D0.88900.49780.06090.046*
H10E0.77470.48830.13990.046*
H10F1.01710.48320.19030.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0509 (5)0.0197 (3)0.0321 (4)−0.0016 (3)0.0206 (4)−0.0041 (3)
O2A0.0432 (5)0.0283 (4)0.0244 (4)−0.0055 (3)0.0179 (3)0.0018 (3)
N1A0.0232 (4)0.0210 (4)0.0172 (4)0.0026 (3)0.0086 (3)0.0016 (3)
N2A0.0196 (3)0.0201 (3)0.0165 (3)0.0004 (3)0.0082 (3)−0.0012 (3)
N3A0.0244 (4)0.0203 (4)0.0210 (4)−0.0024 (3)0.0092 (3)−0.0006 (3)
C1A0.0230 (4)0.0203 (4)0.0185 (4)0.0031 (3)0.0085 (3)0.0016 (3)
C2A0.0161 (4)0.0199 (4)0.0152 (4)0.0017 (3)0.0067 (3)0.0005 (3)
C3A0.0208 (4)0.0232 (4)0.0153 (4)0.0006 (3)0.0086 (3)−0.0019 (3)
C4A0.0204 (4)0.0216 (4)0.0182 (4)−0.0013 (3)0.0088 (3)−0.0033 (3)
C5A0.0174 (4)0.0188 (4)0.0187 (4)−0.0010 (3)0.0079 (3)−0.0003 (3)
C6A0.0175 (4)0.0208 (4)0.0157 (4)−0.0001 (3)0.0073 (3)−0.0004 (3)
C7A0.0149 (3)0.0201 (4)0.0145 (4)0.0004 (3)0.0061 (3)−0.0010 (3)
C8A0.0195 (4)0.0202 (4)0.0178 (4)0.0013 (3)0.0081 (3)−0.0011 (3)
C9A0.0338 (5)0.0209 (4)0.0239 (5)−0.0006 (4)0.0137 (4)−0.0044 (4)
C10A0.0488 (7)0.0204 (4)0.0243 (5)0.0037 (4)0.0162 (5)0.0043 (4)
O1B0.0440 (5)0.0202 (3)0.0365 (5)−0.0034 (3)0.0192 (4)0.0045 (3)
O2B0.0469 (5)0.0206 (3)0.0330 (4)−0.0026 (3)0.0203 (4)−0.0061 (3)
N1B0.0221 (4)0.0186 (3)0.0209 (4)−0.0005 (3)0.0085 (3)−0.0020 (3)
N2B0.0200 (3)0.0183 (3)0.0195 (4)0.0003 (3)0.0081 (3)0.0010 (3)
N3B0.0229 (4)0.0176 (3)0.0284 (4)−0.0011 (3)0.0106 (3)−0.0001 (3)
C1B0.0223 (4)0.0171 (4)0.0234 (4)0.0008 (3)0.0089 (3)−0.0009 (3)
C2B0.0159 (4)0.0186 (4)0.0187 (4)−0.0005 (3)0.0066 (3)−0.0011 (3)
C3B0.0208 (4)0.0212 (4)0.0188 (4)−0.0017 (3)0.0086 (3)−0.0003 (3)
C4B0.0194 (4)0.0207 (4)0.0213 (4)−0.0007 (3)0.0087 (3)0.0018 (3)
C5B0.0174 (4)0.0160 (4)0.0233 (4)−0.0009 (3)0.0087 (3)−0.0006 (3)
C6B0.0180 (4)0.0181 (4)0.0198 (4)−0.0009 (3)0.0085 (3)−0.0017 (3)
C7B0.0157 (3)0.0173 (4)0.0186 (4)−0.0006 (3)0.0072 (3)−0.0010 (3)
C8B0.0206 (4)0.0190 (4)0.0209 (4)0.0009 (3)0.0079 (3)0.0014 (3)
C9B0.0386 (6)0.0209 (4)0.0255 (5)−0.0002 (4)0.0131 (4)0.0042 (4)
C10B0.0433 (6)0.0176 (4)0.0334 (6)−0.0009 (4)0.0188 (5)−0.0027 (4)

Geometric parameters (Å, °)

O1A—N3A1.2267 (11)O1B—N3B1.2272 (11)
O2A—N3A1.2242 (11)O2B—N3B1.2255 (12)
N1A—C1A1.3111 (12)N1B—C1B1.3114 (12)
N1A—C2A1.3705 (12)N1B—C2B1.3686 (12)
N2A—C8A1.3111 (12)N2B—C8B1.3117 (12)
N2A—C7A1.3717 (11)N2B—C7B1.3703 (12)
N3A—C5A1.4658 (12)N3B—C5B1.4646 (12)
C1A—C8A1.4469 (13)C1B—C8B1.4454 (14)
C1A—C10A1.4956 (14)C1B—C10B1.4927 (14)
C2A—C3A1.4087 (13)C2B—C7B1.4062 (13)
C2A—C7A1.4121 (12)C2B—C3B1.4138 (13)
C3A—C4A1.3722 (13)C3B—C4B1.3693 (13)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C5A1.4014 (13)C4B—C5B1.4036 (13)
C4A—H4A0.9300C4B—H4B0.9300
C5A—C6A1.3691 (13)C5B—C6B1.3711 (13)
C6A—C7A1.4086 (13)C6B—C7B1.4066 (12)
C6A—H6A0.9300C6B—H6B0.9300
C8A—C9A1.4944 (13)C8B—C9B1.4978 (14)
C9A—H9A0.9600C9B—H9D0.9600
C9A—H9B0.9600C9B—H9E0.9600
C9A—H9C0.9600C9B—H9F0.9600
C10A—H10A0.9600C10B—H10D0.9600
C10A—H10B0.9600C10B—H10E0.9600
C10A—H10C0.9600C10B—H10F0.9600
C1A—N1A—C2A117.11 (8)C1B—N1B—C2B117.01 (8)
C8A—N2A—C7A117.13 (8)C8B—N2B—C7B116.63 (8)
O2A—N3A—O1A123.57 (9)O2B—N3B—O1B123.47 (9)
O2A—N3A—C5A118.55 (8)O2B—N3B—C5B118.27 (8)
O1A—N3A—C5A117.88 (8)O1B—N3B—C5B118.27 (9)
N1A—C1A—C8A121.84 (9)N1B—C1B—C8B121.99 (9)
N1A—C1A—C10A118.27 (8)N1B—C1B—C10B117.64 (9)
C8A—C1A—C10A119.90 (9)C8B—C1B—C10B120.37 (9)
N1A—C2A—C3A119.10 (8)N1B—C2B—C7B120.87 (8)
N1A—C2A—C7A121.09 (8)N1B—C2B—C3B118.88 (8)
C3A—C2A—C7A119.80 (8)C7B—C2B—C3B120.25 (8)
C4A—C3A—C2A120.12 (8)C4B—C3B—C2B120.38 (9)
C4A—C3A—H3A119.9C4B—C3B—H3B119.8
C2A—C3A—H3A119.9C2B—C3B—H3B119.8
C3A—C4A—C5A118.70 (8)C3B—C4B—C5B118.18 (9)
C3A—C4A—H4A120.6C3B—C4B—H4B120.9
C5A—C4A—H4A120.6C5B—C4B—H4B120.9
C6A—C5A—C4A123.62 (8)C6B—C5B—C4B123.47 (9)
C6A—C5A—N3A118.66 (8)C6B—C5B—N3B117.86 (8)
C4A—C5A—N3A117.72 (8)C4B—C5B—N3B118.67 (8)
C5A—C6A—C7A117.63 (8)C5B—C6B—C7B118.40 (9)
C5A—C6A—H6A121.2C5B—C6B—H6B120.8
C7A—C6A—H6A121.2C7B—C6B—H6B120.8
N2A—C7A—C6A118.79 (8)N2B—C7B—C2B121.76 (8)
N2A—C7A—C2A121.09 (8)N2B—C7B—C6B118.93 (8)
C6A—C7A—C2A120.12 (8)C2B—C7B—C6B119.31 (8)
N2A—C8A—C1A121.74 (8)N2B—C8B—C1B121.72 (9)
N2A—C8A—C9A118.14 (8)N2B—C8B—C9B117.94 (9)
C1A—C8A—C9A120.12 (8)C1B—C8B—C9B120.34 (9)
C8A—C9A—H9A109.5C8B—C9B—H9D109.5
C8A—C9A—H9B109.5C8B—C9B—H9E109.5
H9A—C9A—H9B109.5H9D—C9B—H9E109.5
C8A—C9A—H9C109.5C8B—C9B—H9F109.5
H9A—C9A—H9C109.5H9D—C9B—H9F109.5
H9B—C9A—H9C109.5H9E—C9B—H9F109.5
C1A—C10A—H10A109.5C1B—C10B—H10D109.5
C1A—C10A—H10B109.5C1B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C1A—C10A—H10C109.5C1B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C2A—N1A—C1A—C8A0.68 (14)C2B—N1B—C1B—C8B0.35 (14)
C2A—N1A—C1A—C10A−179.74 (9)C2B—N1B—C1B—C10B−179.15 (9)
C1A—N1A—C2A—C3A179.54 (9)C1B—N1B—C2B—C7B0.83 (13)
C1A—N1A—C2A—C7A−0.23 (13)C1B—N1B—C2B—C3B−179.19 (9)
N1A—C2A—C3A—C4A−179.69 (8)N1B—C2B—C3B—C4B−178.82 (9)
C7A—C2A—C3A—C4A0.09 (13)C7B—C2B—C3B—C4B1.16 (14)
C2A—C3A—C4A—C5A−0.42 (14)C2B—C3B—C4B—C5B−0.29 (14)
C3A—C4A—C5A—C6A0.49 (14)C3B—C4B—C5B—C6B−0.49 (14)
C3A—C4A—C5A—N3A−178.99 (8)C3B—C4B—C5B—N3B179.24 (8)
O2A—N3A—C5A—C6A11.04 (13)O2B—N3B—C5B—C6B−6.86 (13)
O1A—N3A—C5A—C6A−168.57 (9)O1B—N3B—C5B—C6B173.21 (9)
O2A—N3A—C5A—C4A−169.46 (9)O2B—N3B—C5B—C4B173.39 (9)
O1A—N3A—C5A—C4A10.93 (13)O1B—N3B—C5B—C4B−6.54 (13)
C4A—C5A—C6A—C7A−0.20 (14)C4B—C5B—C6B—C7B0.38 (14)
N3A—C5A—C6A—C7A179.27 (8)N3B—C5B—C6B—C7B−179.35 (8)
C8A—N2A—C7A—C6A−179.96 (8)C8B—N2B—C7B—C2B0.80 (13)
C8A—N2A—C7A—C2A0.28 (13)C8B—N2B—C7B—C6B−179.40 (8)
C5A—C6A—C7A—N2A−179.91 (8)N1B—C2B—C7B—N2B−1.47 (13)
C5A—C6A—C7A—C2A−0.15 (13)C3B—C2B—C7B—N2B178.54 (8)
N1A—C2A—C7A—N2A−0.27 (13)N1B—C2B—C7B—C6B178.72 (8)
C3A—C2A—C7A—N2A179.96 (8)C3B—C2B—C7B—C6B−1.26 (13)
N1A—C2A—C7A—C6A179.98 (8)C5B—C6B—C7B—N2B−179.31 (8)
C3A—C2A—C7A—C6A0.21 (13)C5B—C6B—C7B—C2B0.50 (13)
C7A—N2A—C8A—C1A0.16 (13)C7B—N2B—C8B—C1B0.39 (13)
C7A—N2A—C8A—C9A179.99 (8)C7B—N2B—C8B—C9B−179.77 (9)
N1A—C1A—C8A—N2A−0.68 (15)N1B—C1B—C8B—N2B−1.02 (15)
C10A—C1A—C8A—N2A179.74 (9)C10B—C1B—C8B—N2B178.47 (9)
N1A—C1A—C8A—C9A179.49 (9)N1B—C1B—C8B—C9B179.14 (9)
C10A—C1A—C8A—C9A−0.08 (14)C10B—C1B—C8B—C9B−1.37 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3A—H3A···N2Ai0.932.563.4486 (14)160
C9B—H9D···O1Bii0.962.583.5380 (14)176
C10A—H10A···O2Ai0.962.383.3355 (15)171

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5504).

References

  • Ajaikumar, S. & Pandurangan, A. (2009). Appl. Catal. A, 357, 184–192.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Darabi, H. R., Aghapoor, K., Mohsenzadeh, F., Taala, F., Asadollahnejad, N. & Badiei, A. (2009). Catal. Lett.133, 84–89.
  • Darabi, H. R., Tahoori, F., Aghapoor, K., Taala, F. & Mohsenzadeh, F. (2008). J. Braz. Chem. Soc.19, 1646–1652.
  • Ghalib, R. M., Hashim, R., Sulaiman, O., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1494. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wozniak, K., Krygowski, T. M., Grech, E., Kolodziejski, W. & Klinowski, J. (1993). J. Phys. Chem.97, 1862–1867.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography