PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1820.
Published online 2010 June 26. doi:  10.1107/S1600536810024232
PMCID: PMC3006951

Benzamide–picric acid (1/1)

Abstract

In the title compound, C7H7NO·C6H3N3O7, one of the nitro groups of the picric acid mol­ecule lies in the plane of the attached benzene ring [dihedral angle = 1.4 (1)°] while the other two are twisted away by 9.9 (1) and 30.3 (1)°. In the benzamide mol­ecule, the amide group is almost coplanar with the benzene ring [dihedral angle = 4.4 (1)°]. An intra­molecular O—H(...)O hydrogen bond generates an S6 ring motif. In the crystal, mol­ecules are linked into a ribbon-like structure along the b axis by O—H(...)O and N—H(...)O inter­molecular hydrogen bonds. In addition, C—H(...)O hydrogen bonds and short O(...)O contacts [2.828 (2) Å] are observed.

Related literature

For crystal structures of picric acid complexes, see: In et al. (1997 [triangle]); Zaderenko et al. (1997 [triangle]); Nagata et al. (1995 [triangle]); Smith et al. (2004 [triangle]); Goto et al. (2004 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1820-scheme1.jpg

Experimental

Crystal data

  • C7H7NO·C6H3N3O7
  • M r = 350.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1820-efi1.jpg
  • a = 7.8644 (3) Å
  • b = 7.0664 (3) Å
  • c = 25.658 (1) Å
  • β = 90.978 (4)°
  • V = 1425.68 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 110 K
  • 0.22 × 0.19 × 0.17 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.970, T max = 0.977
  • 8136 measured reflections
  • 3309 independent reflections
  • 2518 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.102
  • S = 1.03
  • 3309 reflections
  • 238 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024232/ci5096sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024232/ci5096Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to thank Dr A. Chandramohan, Department of Chemistry, Sri Ramakrishna Mission Vidyalaya Arts and Science College, Coimbatore, India, for his valuable suggestions.

supplementary crystallographic information

Comment

2,4,6-Trinitro phenol, popularly known as picric acid, was primarily used to manufacture explosives and also used as an intermediate in dye manufacturing. It is well known that picric acid forms charge transfer molecular complexes with a number of aromatic compounds such as aromatic hydrocarbons, amines etc. through electrostatic or hydrogen bonding interactions (In et al., 1997; Zaderenko et al., 1997). The crystal structures of a large number of picrate salts and picric acid complexes have been studied to understand the conformational features and charge transfer processes (Nagata et al., 1995; Smith et al., 2004; Goto et al., 2004). We report here the crystal structure of the title compound.

In the picric acid molecule (Fig.1), one of the nitro groups lies in the plane of the attached benzene ring and other two rings are twisted away by 9.9 (1)° [N1/O2/O3] and 30.3 (1)° [N3/O6/O7]; the hydroxyl O atom deviates from the attached benzene ring by 0.039 (1) Å. In the benzamide molecule, the amide group is almost coplanar with the benzene ring (C7—C12) [dihedral angle is 4.4 (1)°]. The sum of the bond angles around the atom N4 (359.9°) of the amide group is in accordance with sp2 hybridization. An intramolecular O1—H1···O2 hydrogen bond forms an S6 ring motif (Bernstein et al., 1995).

The molecules at (x, y, z) and (1-x, 1-y, 1-z) are linked by pairs of C5—H5···O6 intermolecular hydrogen bonds forming a centrosymmetric dimer containing R22(10) ring motif (Table 1). Atom N4 at (x, y, z) acts as a donor to atom O8 at (-x, 1/2 + y, 1/2 -z) forming a C4 zigzag chain running along the b axis. The crystal packing is controlled by O—H···O, N—H···O and C—H···O types of intermolecular hydrogen bonds, which form a three-dimensional network (Fig.2). An intermolecular O2···O8 short contact of 2.828 (2) Å is observed.

Experimental

Picric acid (2.29 g) dissolved in methanol was added dropwise to a methanolic solution of benzamide (1.21 g). The solution was stirred at room temperature for 2 h. Single crystals suitable for X-ray analysis are obtained by repeated recrystallization of the salt from pure methanol.

Refinement

The O- and N-bound H atoms were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically (C–H = 0.95 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound, viewed down the b axis.

Crystal data

C7H7NO·C6H3N3O7F(000) = 720
Mr = 350.25Dx = 1.632 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1043 reflections
a = 7.8644 (3) Åθ = 3.0–29.2°
b = 7.0664 (3) ŵ = 0.14 mm1
c = 25.658 (1) ÅT = 110 K
β = 90.978 (4)°Block, colourless
V = 1425.68 (10) Å30.22 × 0.19 × 0.17 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer3309 independent reflections
Radiation source: fine-focus sealed tube2518 reflections with I > 2σ(I)
graphiteRint = 0.026
ω and [var phi] scansθmax = 29.2°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2008)h = −9→10
Tmin = 0.970, Tmax = 0.977k = −9→9
8136 measured reflectionsl = −33→32

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0535P)2 + 0.2776P] where P = (Fo2 + 2Fc2)/3
3309 reflections(Δ/σ)max = 0.011
238 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.26955 (15)0.56145 (16)0.32065 (4)0.0186 (3)
H10.234 (3)0.606 (4)0.2877 (10)0.065 (8)*
O20.27599 (15)0.83691 (16)0.25079 (4)0.0217 (3)
O30.45097 (16)1.06988 (18)0.26121 (5)0.0302 (3)
O40.70184 (17)1.20512 (18)0.42672 (5)0.0335 (3)
O50.68930 (15)0.99973 (18)0.48912 (4)0.0252 (3)
O60.32595 (16)0.46474 (17)0.46982 (4)0.0249 (3)
O70.32915 (16)0.32061 (16)0.39538 (5)0.0259 (3)
N10.38210 (17)0.92648 (19)0.27671 (5)0.0179 (3)
N20.65720 (17)1.0525 (2)0.44464 (5)0.0203 (3)
N30.35066 (16)0.46102 (18)0.42288 (5)0.0166 (3)
C10.36450 (19)0.6822 (2)0.34693 (6)0.0144 (3)
C20.4245 (2)0.8595 (2)0.32927 (6)0.0148 (3)
C30.5215 (2)0.9797 (2)0.36018 (6)0.0167 (3)
H30.56151.09670.34690.020*
C40.5587 (2)0.9257 (2)0.41060 (6)0.0163 (3)
C50.5038 (2)0.7559 (2)0.43079 (6)0.0156 (3)
H50.52970.72200.46590.019*
C60.41086 (19)0.6370 (2)0.39906 (6)0.0145 (3)
O80.10176 (16)0.49021 (16)0.23654 (4)0.0223 (3)
N4−0.05714 (19)0.6826 (2)0.18599 (6)0.0213 (3)
H4A−0.103 (3)0.705 (3)0.1554 (9)0.039 (6)*
H4B−0.060 (3)0.766 (3)0.2127 (8)0.034 (6)*
C70.0404 (2)0.3810 (2)0.15103 (6)0.0156 (3)
C80.1221 (2)0.2114 (2)0.16244 (6)0.0180 (3)
H80.16810.19060.19640.022*
C90.1373 (2)0.0724 (2)0.12491 (6)0.0211 (4)
H90.1930−0.04330.13320.025*
C100.0710 (2)0.1023 (2)0.07508 (6)0.0231 (4)
H100.08180.00720.04920.028*
C11−0.0112 (2)0.2708 (2)0.06315 (6)0.0221 (4)
H11−0.05660.29100.02910.026*
C12−0.0273 (2)0.4104 (2)0.10097 (6)0.0187 (3)
H12−0.08420.52550.09280.022*
C130.0304 (2)0.5238 (2)0.19409 (6)0.0162 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0225 (6)0.0159 (6)0.0172 (6)−0.0032 (5)−0.0053 (4)0.0010 (4)
O20.0253 (6)0.0198 (6)0.0198 (6)−0.0010 (5)−0.0075 (5)0.0011 (5)
O30.0324 (7)0.0296 (7)0.0285 (7)−0.0124 (6)−0.0014 (5)0.0119 (5)
O40.0418 (8)0.0196 (7)0.0387 (8)−0.0148 (6)−0.0071 (6)0.0005 (5)
O50.0269 (7)0.0276 (7)0.0210 (6)−0.0035 (6)−0.0044 (5)−0.0051 (5)
O60.0320 (7)0.0247 (7)0.0180 (6)−0.0040 (6)−0.0008 (5)0.0045 (5)
O70.0372 (7)0.0128 (6)0.0273 (6)−0.0005 (6)−0.0080 (5)−0.0008 (5)
N10.0181 (7)0.0170 (7)0.0188 (7)0.0025 (6)0.0019 (5)0.0022 (5)
N20.0191 (7)0.0179 (7)0.0237 (7)−0.0022 (6)−0.0002 (5)−0.0053 (6)
N30.0158 (7)0.0133 (7)0.0206 (7)0.0001 (6)−0.0046 (5)0.0014 (5)
C10.0127 (7)0.0139 (7)0.0167 (7)0.0022 (7)0.0003 (6)−0.0019 (6)
C20.0145 (7)0.0160 (8)0.0141 (7)0.0031 (7)0.0008 (6)0.0007 (6)
C30.0158 (8)0.0126 (7)0.0218 (8)0.0010 (7)0.0034 (6)−0.0006 (6)
C40.0145 (8)0.0154 (8)0.0191 (7)−0.0014 (7)0.0003 (6)−0.0048 (6)
C50.0155 (8)0.0163 (8)0.0149 (7)0.0031 (7)−0.0017 (6)−0.0015 (6)
C60.0145 (8)0.0117 (7)0.0174 (7)0.0017 (6)0.0009 (6)0.0004 (6)
O80.0302 (7)0.0170 (6)0.0196 (6)−0.0018 (5)−0.0092 (5)0.0007 (5)
N40.0293 (8)0.0154 (7)0.0190 (7)0.0035 (7)−0.0040 (6)−0.0007 (6)
C70.0132 (7)0.0158 (8)0.0180 (7)−0.0034 (6)0.0005 (6)0.0011 (6)
C80.0161 (8)0.0179 (8)0.0201 (8)−0.0014 (7)0.0006 (6)0.0030 (6)
C90.0214 (8)0.0161 (8)0.0260 (9)0.0015 (7)0.0042 (7)0.0023 (6)
C100.0228 (9)0.0230 (9)0.0237 (8)−0.0016 (8)0.0035 (7)−0.0068 (7)
C110.0202 (9)0.0275 (9)0.0185 (8)−0.0009 (8)−0.0024 (6)−0.0015 (7)
C120.0156 (8)0.0193 (8)0.0211 (8)−0.0002 (7)−0.0008 (6)0.0018 (6)
C130.0163 (8)0.0139 (8)0.0183 (8)−0.0045 (7)−0.0008 (6)0.0024 (6)

Geometric parameters (Å, °)

O1—C11.3126 (19)C5—H50.95
O1—H10.94 (3)O8—C131.2399 (19)
O2—N11.2330 (17)N4—C131.331 (2)
O3—N11.2189 (17)N4—H4A0.87 (2)
O4—N21.2262 (18)N4—H4B0.90 (2)
O5—N21.2230 (18)C7—C81.389 (2)
O6—N31.2237 (17)C7—C121.397 (2)
O7—N31.2275 (17)C7—C131.499 (2)
N1—C21.4623 (19)C8—C91.382 (2)
N2—C41.464 (2)C8—H80.95
N3—C61.468 (2)C9—C101.389 (2)
C1—C21.416 (2)C9—H90.95
C1—C61.417 (2)C10—C111.387 (2)
C2—C31.383 (2)C10—H100.95
C3—C41.375 (2)C11—C121.391 (2)
C3—H30.95C11—H110.95
C4—C51.379 (2)C12—H120.95
C5—C61.372 (2)
C1—O1—H1113.9 (16)C5—C6—N3116.37 (13)
O3—N1—O2123.45 (14)C1—C6—N3120.28 (13)
O3—N1—C2118.32 (13)C13—N4—H4A120.1 (14)
O2—N1—C2118.22 (13)C13—N4—H4B116.6 (13)
O5—N2—O4124.21 (14)H4A—N4—H4B123.2 (19)
O5—N2—C4117.97 (13)C8—C7—C12119.32 (15)
O4—N2—C4117.82 (13)C8—C7—C13117.10 (14)
O6—N3—O7124.09 (14)C12—C7—C13123.59 (15)
O6—N3—C6116.70 (12)C9—C8—C7120.77 (15)
O7—N3—C6119.21 (12)C9—C8—H8119.6
O1—C1—C2126.91 (14)C7—C8—H8119.6
O1—C1—C6118.25 (14)C8—C9—C10119.85 (16)
C2—C1—C6114.82 (13)C8—C9—H9120.1
C3—C2—C1122.92 (14)C10—C9—H9120.1
C3—C2—N1116.43 (14)C11—C10—C9120.01 (15)
C1—C2—N1120.64 (14)C11—C10—H10120.0
C4—C3—C2118.41 (14)C9—C10—H10120.0
C4—C3—H3120.8C10—C11—C12120.18 (16)
C2—C3—H3120.8C10—C11—H11119.9
C3—C4—C5122.10 (14)C12—C11—H11119.9
C3—C4—N2119.57 (14)C11—C12—C7119.87 (16)
C5—C4—N2118.32 (14)C11—C12—H12120.1
C6—C5—C4118.48 (14)C7—C12—H12120.1
C6—C5—H5120.8O8—C13—N4121.60 (15)
C4—C5—H5120.8O8—C13—C7119.32 (14)
C5—C6—C1123.24 (14)N4—C13—C7119.08 (14)
O1—C1—C2—C3178.66 (14)O1—C1—C6—C5−177.29 (14)
C6—C1—C2—C30.3 (2)C2—C1—C6—C51.2 (2)
O1—C1—C2—N10.1 (2)O1—C1—C6—N3−1.1 (2)
C6—C1—C2—N1−178.30 (13)C2—C1—C6—N3177.36 (13)
O3—N1—C2—C39.0 (2)O6—N3—C6—C528.3 (2)
O2—N1—C2—C3−169.57 (13)O7—N3—C6—C5−151.32 (14)
O3—N1—C2—C1−172.29 (14)O6—N3—C6—C1−148.15 (14)
O2—N1—C2—C19.1 (2)O7—N3—C6—C132.3 (2)
C1—C2—C3—C4−1.2 (2)C12—C7—C8—C90.2 (2)
N1—C2—C3—C4177.46 (13)C13—C7—C8—C9−179.82 (14)
C2—C3—C4—C50.6 (2)C7—C8—C9—C100.3 (2)
C2—C3—C4—N2−178.32 (13)C8—C9—C10—C11−0.4 (2)
O5—N2—C4—C3−179.43 (14)C9—C10—C11—C120.1 (2)
O4—N2—C4—C30.8 (2)C10—C11—C12—C70.4 (2)
O5—N2—C4—C51.6 (2)C8—C7—C12—C11−0.5 (2)
O4—N2—C4—C5−178.23 (14)C13—C7—C12—C11179.50 (15)
C3—C4—C5—C60.8 (2)C8—C7—C13—O83.8 (2)
N2—C4—C5—C6179.76 (13)C12—C7—C13—O8−176.21 (15)
C4—C5—C6—C1−1.8 (2)C8—C7—C13—N4−175.26 (14)
C4—C5—C6—N3−178.05 (13)C12—C7—C13—N44.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.94 (3)1.92 (3)2.6473 (16)132 (2)
O1—H1···O80.94 (3)1.85 (3)2.5603 (16)130 (2)
N4—H4A···O7i0.87 (2)2.33 (2)3.120 (2)150 (2)
N4—H4B···O8i0.90 (2)2.08 (2)2.9702 (19)167 (2)
C5—H5···O6ii0.952.393.257 (2)152
C9—H9···O4iii0.952.503.185 (2)129

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y−3/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5096).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Goto, M., Kanno, H., Sugaya, E., Osa, Y. & Takayanagi, H. (2004). Anal. Sci.20, x39–x40.
  • In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.
  • Nagata, H., In, Y., Doi, M., Ishida, T. & Wakahara, A. (1995). Acta Cryst. B51, 1051–1058.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800–o1803.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography