PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m801–m802.
Published online 2010 June 16. doi:  10.1107/S1600536810021719
PMCID: PMC3006950

(Acetyl­acetonato-κ2 O,O′)chlorido­trimethano­latoniobium(V)

Abstract

In the title compound, [Nb(CH3O)3(C5H7O2)Cl], the NbV atom is coordinated by two O atoms from the chelating acetyl­acetonate ligand, three O atoms from the methano­late groups and one chloride ligand. The octa­hedral environment around niobium is slightly distorted with Nb—O distances in the range 1.8603 (15)–2.1083 (15) Å and an Nb—Cl distance of 2.4693 (9) Å. The O—Nb—O angles vary between 80.74 (6) and 100.82 (7)°, while the trans Cl—Nb—O angle is 167.60 (5)°. There are no hydrogen bonds observed, only an inter­molecular C—H(...)O inter­action.

Related literature

For synthetic background, see: Davies et al. (1999 [triangle]). For applications of acetyl­acetone in industry, see: Steyn et al. (1992 [triangle], 1997 [triangle]); Otto et al. (1998 [triangle]); Roodt & Steyn (2000 [triangle]); Brink et al. (2010 [triangle]); Viljoen et al. (2008 [triangle], 2009a [triangle],b [triangle], 2010 [triangle]); Steyn et al. (2008 [triangle]). For related niobium complexes, see: Sokolov et al. (1999 [triangle], 2005 [triangle]); Anti­nolo et al. (2000 [triangle]); Dahan et al. (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m801-scheme1.jpg

Experimental

Crystal data

  • [Nb(CH3O)3(C5H7O2)Cl]
  • M r = 320.57
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m801-efi1.jpg
  • a = 12.296 (5) Å
  • b = 12.915 (4) Å
  • c = 15.470 (5) Å
  • V = 2456.7 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.20 mm−1
  • T = 100 K
  • 0.36 × 0.30 × 0.19 mm

Data collection

  • Bruker X8 APEXII 4K Kappa CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.673, T max = 0.805
  • 28601 measured reflections
  • 3083 independent reflections
  • 2757 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.068
  • S = 1.16
  • 3083 reflections
  • 141 parameters
  • H-atom parameters constrained
  • Δρmax = 1.06 e Å−3
  • Δρmin = −0.87 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021719/pv2289sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021719/pv2289Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, the New Metals Development Network (NMDN), the South African Nuclear Energy Corporation Limited (Necsa) and the University of the Free State is gratefully acknowledged.

supplementary crystallographic information

Comment

Acetylacetone and its analogues find applications in homogenous catalysis and the separations industry (Steyn et al., 1992; 1997; Otto et al., 1998; Roodt & Steyn, 2000; Brink et al., 2010). This study forms part of ongoing research to investigate the intimate mechanism of the reactions of O,O'- and N,O -bidentate ligands with transition metals used in the nuclear industry, specifically hafnium, zirconium, niobium and tantalum (Viljoen et al., 2008; 2009a,b; 2010; Steyn et al., 2008).

Pale-yellow cubic crystals of the title complex crystallize from a methanol reaction solution containing niobium(V) chloride and acetylacetone after several days (Davies et al., 1999). The asymmetric unit consists of a niobium(V) atom surrounded by three methanolate groups, a chloride ligand and a O,O'- bonded acetylacetonato ligand (Figure 1). The octahedral environment around niobium is slightly distorted with Nb–O distances varying between 1.8603 (15) and 2.1083 (15) Å, while the Nb–Cl distance is 2.4693 (9) Å. The O–Nb–O angles vary between 80.74 (6) and 100.82 (7) ° while the trans Cl–Nb–O angle is 167.60 (5) °. All the bond distances and angles are similar to other relevant niobium(V) structures (Sokolov et al., 1999; 2005; Antinolo et al., 2000 and Dahan et al., 1976). The niobium compounds pack in a head-to-tail fashion along the bc plain.

There are no classical hydrogen bonds observed in this structure. However, the structure is stabilized by C8–H8C..O4* (* = -1/2+x,1/2-y,1-z) intermolecular interactions with C—H = 0.98, H···O = 2.46 and C···O = 3.442 (3) Å and C—H···O angle = 176°.

Experimental

The reaction was performed under modified Schlenk conditions under an argon atmosphere. NbCl5 (0.3134 g, 1.16 mmol) was carefully dissolved in absolute methanol (5 ml) (Care: exothermic reaction). Acetylacetone (0.119 ml, 1.16 mmol) was added to the solution. The colourless solution was stirred for 1 h at room temperature and the solution was left to stand at 252 K for a few days after which pale-yellow crystals, suitable for X-ray diffraction were obtained.

Refinement

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The highest residual electron-density peak is 0.93 Å from Cl1.

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level.

Crystal data

[Nb(CH3O)3(C5H7O2)Cl]F(000) = 1296
Mr = 320.57Dx = 1.733 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9878 reflections
a = 12.296 (5) Åθ = 2.6–28.4°
b = 12.915 (4) ŵ = 1.20 mm1
c = 15.470 (5) ÅT = 100 K
V = 2456.7 (16) Å3Cuboid, pale-yellow
Z = 80.36 × 0.3 × 0.19 mm

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer3083 independent reflections
Radiation source: fine-focus sealed tube2757 reflections with I > 2σ(I)
graphiteRint = 0.030
ω and [var phi] scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −12→16
Tmin = 0.673, Tmax = 0.805k = −14→17
28601 measured reflectionsl = −18→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.16w = 1/[σ2(Fo2) + (0.0273P)2 + 3.5334P] where P = (Fo2 + 2Fc2)/3
3083 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = −0.87 e Å3
0 constraints

Special details

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 688 frames were collected with a frame width of 0.5° covering up to θ = 28.24° with 99.1% completeness accomplished.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.00363 (19)0.09540 (17)0.76165 (14)0.0195 (4)
H1A−0.03850.15940.76760.029*
H1B0.02280.06920.81910.029*
H1C−0.040.04350.73110.029*
C20.3610 (2)0.07674 (19)0.54112 (15)0.0217 (5)
H2A0.32220.08340.48610.033*
H2B0.38470.00490.54880.033*
H2C0.42470.12240.54090.033*
C30.26952 (19)0.38799 (16)0.74055 (15)0.0195 (4)
H3A0.28550.430.68940.029*
H3B0.33090.39150.78090.029*
H3C0.20390.41450.76890.029*
C40.2957 (2)0.37805 (19)0.41139 (16)0.0231 (5)
H4A0.30830.440.44660.035*
H4B0.26050.39780.3570.035*
H4C0.36540.34430.3990.035*
C50.22378 (18)0.30466 (16)0.45973 (14)0.0158 (4)
C60.14339 (18)0.24919 (17)0.41581 (14)0.0174 (4)
H60.13040.26570.35690.021*
C70.08152 (17)0.17147 (16)0.45334 (13)0.0148 (4)
O10.09963 (13)0.11572 (11)0.71426 (9)0.0162 (3)
O20.29097 (12)0.10497 (12)0.60982 (10)0.0161 (3)
O30.25251 (13)0.28363 (11)0.71528 (9)0.0158 (3)
O40.24286 (13)0.29502 (11)0.54083 (10)0.0155 (3)
O50.09160 (13)0.14211 (11)0.53257 (9)0.0158 (3)
Cl10.02912 (4)0.32547 (4)0.64105 (3)0.01788 (11)
Nb10.178955 (15)0.198214 (14)0.638103 (11)0.01144 (7)
C8−0.00329 (19)0.11656 (18)0.40125 (14)0.0200 (4)
H8A−0.00150.04240.41470.03*
H8B0.01130.12680.33960.03*
H8C−0.07520.14450.41540.03*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0207 (11)0.0218 (10)0.0160 (10)−0.0056 (9)0.0046 (8)−0.0002 (8)
C20.0221 (11)0.0254 (11)0.0175 (10)0.0029 (9)0.0043 (9)−0.0018 (8)
C30.0185 (11)0.0155 (9)0.0245 (11)−0.0016 (8)−0.0015 (9)−0.0023 (8)
C40.0237 (12)0.0247 (12)0.0209 (11)−0.0011 (9)0.0053 (9)0.0094 (9)
C50.0175 (10)0.0160 (10)0.0139 (10)0.0040 (8)0.0042 (8)0.0037 (7)
C60.0192 (10)0.0226 (10)0.0105 (9)0.0033 (9)0.0009 (8)0.0023 (8)
C70.0155 (10)0.0178 (9)0.0112 (9)0.0054 (8)−0.0003 (8)−0.0029 (7)
O10.0187 (8)0.0174 (7)0.0125 (7)−0.0016 (6)0.0030 (6)0.0022 (6)
O20.0161 (7)0.0180 (7)0.0140 (7)0.0021 (6)0.0020 (6)0.0010 (6)
O30.0194 (8)0.0148 (7)0.0132 (7)−0.0018 (6)−0.0011 (6)−0.0007 (5)
O40.0173 (7)0.0170 (7)0.0123 (7)−0.0024 (6)0.0009 (6)0.0025 (5)
O50.0198 (8)0.0165 (7)0.0112 (7)−0.0032 (6)−0.0013 (6)−0.0006 (5)
Cl10.0170 (2)0.0169 (2)0.0198 (3)0.00236 (19)0.00092 (19)0.00026 (18)
Nb10.01376 (11)0.01214 (10)0.00841 (10)−0.00081 (6)0.00045 (6)0.00115 (6)
C80.0199 (11)0.0250 (11)0.0150 (10)0.0007 (9)−0.0035 (8)−0.0043 (8)

Geometric parameters (Å, °)

C1—O11.414 (3)C5—O41.282 (3)
C1—H1A0.98C5—C61.397 (3)
C1—H1B0.98C6—C71.387 (3)
C1—H1C0.98C6—H60.95
C2—O21.416 (3)C7—O51.289 (3)
C2—H2A0.98C7—C81.497 (3)
C2—H2B0.98O1—Nb11.8640 (15)
C2—H2C0.98O2—Nb11.8811 (16)
C3—O31.419 (2)O3—Nb11.8603 (15)
C3—H3A0.98O4—Nb12.1083 (15)
C3—H3B0.98O5—Nb12.0842 (15)
C3—H3C0.98Cl1—Nb12.4693 (9)
C4—C51.497 (3)C8—H8A0.98
C4—H4A0.98C8—H8B0.98
C4—H4B0.98C8—H8C0.98
C4—H4C0.98
O1—C1—H1A109.5O5—C7—C6123.9 (2)
O1—C1—H1B109.5O5—C7—C8116.1 (2)
H1A—C1—H1B109.5C6—C7—C8120.0 (2)
O1—C1—H1C109.5C1—O1—Nb1150.52 (14)
H1A—C1—H1C109.5C2—O2—Nb1141.71 (14)
H1B—C1—H1C109.5C3—O3—Nb1144.27 (14)
O2—C2—H2A109.5C5—O4—Nb1133.45 (14)
O2—C2—H2B109.5C7—O5—Nb1133.79 (14)
H2A—C2—H2B109.5O3—Nb1—O1100.82 (7)
O2—C2—H2C109.5O3—Nb1—O299.96 (7)
H2A—C2—H2C109.5O1—Nb1—O299.45 (7)
H2B—C2—H2C109.5O3—Nb1—O5163.63 (6)
O3—C3—H3A109.5O1—Nb1—O591.53 (7)
O3—C3—H3B109.5O2—Nb1—O588.43 (7)
H3A—C3—H3B109.5O3—Nb1—O485.71 (7)
O3—C3—H3C109.5O1—Nb1—O4170.09 (6)
H3A—C3—H3C109.5O2—Nb1—O486.60 (7)
H3B—C3—H3C109.5O5—Nb1—O480.74 (6)
C5—C4—H4A109.5O3—Nb1—Cl187.49 (6)
C5—C4—H4B109.5O1—Nb1—Cl188.76 (5)
H4A—C4—H4B109.5O2—Nb1—Cl1167.60 (5)
C5—C4—H4C109.5O5—Nb1—Cl182.03 (5)
H4A—C4—H4C109.5O4—Nb1—Cl184.06 (5)
H4B—C4—H4C109.5C7—C8—H8A109.5
O4—C5—C6123.7 (2)C7—C8—H8B109.5
O4—C5—C4116.2 (2)H8A—C8—H8B109.5
C6—C5—C4120.0 (2)C7—C8—H8C109.5
C7—C6—C5123.8 (2)H8A—C8—H8C109.5
C7—C6—H6118.1H8B—C8—H8C109.5
C5—C6—H6118.1
O4—C5—C6—C7−5.6 (3)C1—O1—Nb1—Cl15.1 (3)
C4—C5—C6—C7172.5 (2)C2—O2—Nb1—O3−109.4 (2)
C5—C6—C7—O50.0 (3)C2—O2—Nb1—O1147.7 (2)
C5—C6—C7—C8179.7 (2)C2—O2—Nb1—O556.4 (2)
C6—C5—O4—Nb13.5 (3)C2—O2—Nb1—O4−24.4 (2)
C4—C5—O4—Nb1−174.66 (15)C2—O2—Nb1—Cl116.8 (4)
C6—C7—O5—Nb18.1 (3)C7—O5—Nb1—O326.9 (3)
C8—C7—O5—Nb1−171.59 (14)C7—O5—Nb1—O1166.10 (19)
C3—O3—Nb1—O1−120.8 (2)C7—O5—Nb1—O2−94.49 (19)
C3—O3—Nb1—O2137.5 (2)C7—O5—Nb1—O4−7.67 (19)
C3—O3—Nb1—O517.5 (4)C7—O5—Nb1—Cl177.56 (19)
C3—O3—Nb1—O451.7 (2)C5—O4—Nb1—O3−169.00 (19)
C3—O3—Nb1—Cl1−32.5 (2)C5—O4—Nb1—O290.7 (2)
C1—O1—Nb1—O392.3 (3)C5—O4—Nb1—O51.77 (19)
C1—O1—Nb1—O2−165.5 (3)C5—O4—Nb1—Cl1−81.08 (19)
C1—O1—Nb1—O5−76.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8C···O4i0.982.463.442 (3)176

Symmetry codes: (i) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2289).

References

  • Antinolo, A., Carrillo-Hermosilla, F., Fernandez-Baeza, J., Otero, A., Palomares, E., Rodriguez, A. M. & Sanchez-Barba, L. F. (2000). J. Organomet. Chem.603, 194–198.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans pp. 5572–5578. [PubMed]
  • Bruker (2004). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dahan, F., Kergoat, R., Senechal-Tocquer, M. C. & Guerchais, J. E. (1976). J. Chem. Soc. Dalton Trans. pp. 2202–2209.
  • Davies, H. O., Leedham, T. J., Jones, A. C., O’Brien, P., White, A. J. P. & Williams, D. J. (1999). Polyhedron, 18, 3165–3172.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447–2453.
  • Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1–23. Trivandrum, India: Transworld Research Network.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sokolov, M., Gushchin, A. L., Tkachev, S. V., Naumov, D. Yu., Nunez, P., Gili, P., Platas, J. G. & Fedin, V. P. (2005). Inorg. Chim. Acta, 358, 2371–2376.
  • Sokolov, M., Imoto, H., Saito, T. & Fedorov, V. (1999). J. Chem. Soc. Dalton Trans. pp. 85–92.
  • Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem.31, 3477–3481.
  • Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem., 536–537, 197–205.
  • Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827. [PMC free article] [PubMed]
  • Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838–m839. [PMC free article] [PubMed]
  • Viljoen, J. A., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m603–m604. [PMC free article] [PubMed]
  • Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009a). Acta Cryst. E65, m1514–m1515. [PMC free article] [PubMed]
  • Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009b). Acta Cryst. E65, m1367–m1368. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography