PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1738.
Published online 2010 June 23. doi:  10.1107/S1600536810023305
PMCID: PMC3006944

Benzimidazolium 3,5-dicarb­oxy­benzoate trihydrate

Abstract

Cocrystallization of benzimidazole with benzene 1,3,5-tricarb­oxy­lic acid in slightly basic medium afforded the title compound, C7H7N2 +·C9H5O6 ·3H2O, in which one of the imidazole N atom is protonated and one carb­oxy­lic group of aromatic acid is deprotonated. In the crystal structure, inter­molecular N—H(...)O hydrogen-bonding connects the two organic components into dimers, which are further linked into a three-dimensional network by O—H(...)O and N—H(...)O inter­actions between the water mol­ecules and the dimers.

Related literature

For mol­ecular self-assembly by non-covalent inter­actions and its potential applications, see: Remenar et al. (2003 [triangle]); Oxtoby et al. (2005 [triangle]); Zaworotko (2001 [triangle]). For the benzimidazole-based supra­molecular aggregate formed by π–π stacking and hydrogen-bonding inter­actions, see Gao et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1738-scheme1.jpg

Experimental

Crystal data

  • C7H7N2 +·C9H5O6 ·3H2O
  • M r = 382.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1738-efi1.jpg
  • a = 3.8478 (2) Å
  • b = 10.2231 (6) Å
  • c = 11.2982 (7) Å
  • α = 85.522 (1)°
  • β = 80.707 (1)°
  • γ = 81.826 (1)°
  • V = 433.45 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 K
  • 0.24 × 0.22 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.971, T max = 0.976
  • 2240 measured reflections
  • 1536 independent reflections
  • 1478 reflections with I > 2σ(I)
  • R int = 0.008

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.073
  • S = 1.04
  • 1536 reflections
  • 246 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg & Berndt, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023305/nc2189sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023305/nc2189Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Tianjin Key Laboratory of Structure and Performance for Functional Mol­ecule.

supplementary crystallographic information

Comment

Recently, molecular self-assembly by non-covalent interactions has attacted considerable interest in supramolecular chemistry and crystal engineering due to their possible potential applications as functional materials (Zaworotko, 2001), in molecular recognition (Oxtoby et al., 2005), and pharmaceutical chemistry (Remenar et al., 2003). Obviously, the conguated organic components with rich carboxylate or amino groups have became good blocks for the construction of self-assembly systems, since hydrogen-bonding and π··· π interactions are the main driven forces of the assembly process. In this context benzimidazole (bim) and its derivatives have been used as promising building blocks for the construction of supramolecular aggregates. As a continuation of this work bim and 1,3,5-benzenetricarboxylic acid (H3btc) were reacted in slightly basic medium and the product were identified by single crystal X-ray diffraction.

The asymmetric unit of the title compound comprises one Hbim+ cation, one monodeprotonated H2btc- anion and three water molecules all of the located in general positions (Fig. 1). The two carboxyl groups are located within the plane of the aromatic ring, whereas the deprotonated carboxylate group is slightly twisted out of the ring plane. The dihedral angle between the aromatic and the benzimidazole rings amount to 6.84 (5)o.

In the crystal structure, the Hbim+ cations and H2btc- anions are connected into dimers by N–H···O hydrogen-bonding between the N—H H atoms and the carboxylate group (Table 1). These dimers are further connected by O–H···O and N–H···O hydrogen bonding between the water molecules, the carboxyl and carboxylate groups as well as the N-H H atoms into a three-dimensional hydrogen bonded network (Figure 2 and Table 1). In this interactions the water molecules act as hydrogen bond donor and acceptor.

Experimental

A mixture containing H3btc (21.0 mg, 0.1 mmol), bim (11.8 mg, 0.1 mmol), and NaOH (4.0 mg, 0.1 mmol) was dissolved in a mixed methanol-H2O solution (v: v = 1:1, 10.0 ml). Then, the mixture was transferred into a Teflon-lined reactor (23.0 ml) and heated to 70 oC for 48 hrs. After the mixture was cooled to room temperature at a rate of 6 oC h-1, colorless block-shaped crystals suitable for X-ray diffraction were obtained directly. Yield: 56% based on bim. Anal.Calcd for C16H18N2O9,C,50.26; H, 4.75; N, 7.33%. Found: C, 50.32; H, 4.78; N,7.36%.

Refinement

The C-H, N-H and hydroxy H atoms were located in difference maps, but were placed in calculated positions (O-H allowed to rotate but not to tip) and treated as riding, with C – H = 0.93, O – H = 0.82 and N – H = 0.86 Å. The water H atoms were located in difference map and were refined using restraints. All H were refined isotropic with [Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O)].

Figures

Fig. 1.
The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
Crystal structure of the title compound with view along the a-axis. Hydrogen bonding is shown as dashed lines.

Crystal data

C7H7N2+·C9H5O6·3H2OZ = 1
Mr = 382.32F(000) = 200
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: P1Mo Kα radiation, λ = 0.71073 Å
a = 3.8478 (2) ÅCell parameters from 1795 reflections
b = 10.2231 (6) Åθ = 2.8–27.9°
c = 11.2982 (7) ŵ = 0.12 mm1
α = 85.522 (1)°T = 296 K
β = 80.707 (1)°Block, colourless
γ = 81.826 (1)°0.24 × 0.22 × 0.20 mm
V = 433.45 (4) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer1536 independent reflections
Radiation source: fine-focus sealed tube1478 reflections with I > 2σ(I)
graphiteRint = 0.008
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −4→4
Tmin = 0.971, Tmax = 0.976k = −12→5
2240 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0522P)2 + 0.0236P] where P = (Fo2 + 2Fc2)/3
1536 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.14 e Å3
3 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.8287 (5)0.63795 (18)1.20720 (14)0.0482 (4)
O20.9531 (6)0.44710 (18)1.11874 (15)0.0581 (5)
O31.2332 (6)0.50067 (17)0.65819 (16)0.0552 (5)
O40.9893 (5)0.68726 (18)0.57532 (15)0.0546 (5)
H41.10050.65610.51350.082*
O50.2872 (6)1.03786 (17)0.80326 (17)0.0596 (5)
O60.1819 (5)1.01258 (17)1.00192 (16)0.0544 (5)
H60.06621.08580.99460.082*
N1−0.0881 (6)0.2463 (2)0.52127 (19)0.0457 (5)
H1−0.16440.24700.59710.055*
N20.0014 (6)0.3109 (2)0.33346 (19)0.0458 (5)
H2−0.00770.35950.26810.055*
C10.1306 (6)0.1435 (2)0.4635 (2)0.0384 (5)
C20.1892 (6)0.1855 (2)0.3429 (2)0.0387 (5)
C30.3998 (7)0.1058 (3)0.2576 (2)0.0497 (6)
H30.44110.13360.17690.060*
C40.5439 (7)−0.0170 (3)0.2996 (3)0.0587 (7)
H4A0.6863−0.07350.24550.070*
C50.4822 (8)−0.0587 (3)0.4207 (3)0.0592 (8)
H50.5843−0.14240.44500.071*
C60.2766 (7)0.0196 (3)0.5047 (3)0.0507 (6)
H6A0.2364−0.00860.58540.061*
C7−0.1607 (7)0.3433 (2)0.4406 (2)0.0482 (6)
H7−0.30520.42270.45740.058*
C80.7899 (5)0.6418 (2)1.00125 (19)0.0329 (5)
C90.9324 (5)0.5896 (2)0.89162 (19)0.0325 (4)
H91.06280.50570.88950.039*
C100.8824 (6)0.6614 (2)0.78491 (19)0.0320 (4)
C110.6801 (5)0.7855 (2)0.78785 (19)0.0332 (4)
H110.64510.83360.71650.040*
C120.5300 (6)0.8377 (2)0.8973 (2)0.0339 (5)
C130.5874 (5)0.7666 (2)1.00353 (19)0.0336 (4)
H130.49070.80231.07680.040*
C140.8615 (6)0.5697 (2)1.11777 (19)0.0367 (5)
C151.0532 (6)0.6071 (2)0.66716 (18)0.0358 (5)
C160.3216 (6)0.9717 (2)0.8957 (2)0.0388 (5)
O70.8307 (6)0.24730 (19)0.9861 (2)0.0668 (6)
H7A0.87660.31191.02130.100*
H7B0.76020.28140.92160.100*
O80.5721 (6)0.27703 (19)0.75910 (17)0.0584 (5)
H8A0.43560.21740.77390.088*
H8B0.43730.34790.74460.088*
O90.2592 (5)0.60054 (19)0.37164 (15)0.0520 (5)
H9A0.10630.61140.32400.078*
H9B0.44790.62320.33000.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0596 (10)0.0565 (10)0.0271 (8)0.0005 (8)−0.0094 (7)−0.0032 (7)
O20.0961 (15)0.0393 (9)0.0363 (9)0.0075 (9)−0.0217 (9)0.0072 (7)
O30.0797 (12)0.0418 (10)0.0325 (9)0.0211 (9)−0.0007 (8)0.0009 (7)
O40.0773 (12)0.0496 (10)0.0247 (8)0.0198 (9)0.0002 (8)0.0047 (7)
O50.0951 (15)0.0369 (9)0.0398 (10)0.0166 (9)−0.0136 (9)0.0021 (8)
O60.0812 (13)0.0359 (9)0.0385 (9)0.0153 (8)−0.0060 (9)−0.0032 (7)
N10.0534 (11)0.0466 (12)0.0355 (11)−0.0055 (9)−0.0028 (9)−0.0024 (9)
N20.0611 (13)0.0366 (10)0.0406 (11)−0.0060 (9)−0.0160 (10)0.0087 (8)
C10.0440 (11)0.0384 (11)0.0346 (11)−0.0078 (9)−0.0119 (9)0.0034 (9)
C20.0462 (12)0.0371 (12)0.0355 (11)−0.0099 (10)−0.0131 (10)0.0036 (9)
C30.0536 (14)0.0597 (16)0.0371 (13)−0.0118 (12)−0.0048 (11)−0.0075 (12)
C40.0533 (15)0.0527 (16)0.072 (2)−0.0013 (12)−0.0138 (14)−0.0202 (14)
C50.0596 (16)0.0382 (13)0.082 (2)0.0024 (11)−0.0281 (15)0.0001 (14)
C60.0617 (15)0.0440 (14)0.0493 (14)−0.0071 (12)−0.0229 (12)0.0107 (11)
C70.0556 (14)0.0381 (13)0.0503 (15)−0.0012 (11)−0.0105 (12)−0.0021 (11)
C80.0370 (11)0.0335 (11)0.0276 (10)−0.0049 (9)−0.0052 (8)0.0024 (8)
C90.0373 (11)0.0297 (10)0.0282 (10)0.0016 (8)−0.0046 (8)0.0012 (8)
C100.0376 (10)0.0315 (10)0.0254 (10)−0.0016 (8)−0.0046 (8)0.0009 (8)
C110.0397 (10)0.0307 (10)0.0274 (11)−0.0001 (8)−0.0064 (8)0.0032 (8)
C120.0388 (10)0.0297 (10)0.0337 (12)−0.0030 (8)−0.0085 (9)−0.0006 (9)
C130.0394 (11)0.0321 (11)0.0280 (10)−0.0007 (9)−0.0040 (8)−0.0028 (8)
C140.0421 (11)0.0389 (12)0.0267 (11)0.0014 (9)−0.0061 (9)0.0025 (9)
C150.0412 (11)0.0350 (12)0.0281 (11)0.0024 (9)−0.0038 (9)0.0021 (9)
C160.0485 (12)0.0308 (11)0.0363 (12)0.0012 (9)−0.0093 (10)−0.0037 (10)
O70.0998 (16)0.0385 (9)0.0595 (12)0.0173 (9)−0.0252 (11)−0.0076 (9)
O80.0766 (13)0.0444 (10)0.0464 (10)0.0072 (8)−0.0049 (9)0.0089 (8)
O90.0559 (10)0.0711 (12)0.0274 (8)−0.0039 (9)−0.0054 (7)−0.0029 (8)

Geometric parameters (Å, °)

O1—C141.252 (3)C5—H50.9300
O2—C141.252 (3)C6—H6A0.9300
O3—C151.206 (3)C7—H70.9300
O4—C151.304 (3)C8—C91.386 (3)
O4—H40.8200C8—C131.397 (3)
O5—C161.214 (3)C8—C141.503 (3)
O6—C161.308 (3)C9—C101.388 (3)
O6—H60.8200C9—H90.9300
N1—C71.325 (3)C10—C111.390 (3)
N1—C11.384 (3)C10—C151.496 (3)
N1—H10.8600C11—C121.390 (3)
N2—C71.313 (4)C11—H110.9300
N2—C21.384 (3)C12—C131.385 (3)
N2—H20.8600C12—C161.487 (3)
C1—C61.388 (3)C13—H130.9300
C1—C21.389 (3)O7—H7A0.8500
C2—C31.390 (4)O7—H7B0.8499
C3—C41.378 (4)O8—H8A0.8500
C3—H30.9300O8—H8B0.8500
C4—C51.394 (5)O9—H9A0.8500
C4—H4A0.9300O9—H9B0.8500
C5—C61.366 (5)
C15—O4—H4109.5C9—C8—C14121.44 (18)
C16—O6—H6109.5C13—C8—C14119.20 (18)
C7—N1—C1108.8 (2)C8—C9—C10120.62 (18)
C7—N1—H1125.6C8—C9—H9119.7
C1—N1—H1125.6C10—C9—H9119.7
C7—N2—C2108.8 (2)C9—C10—C11119.75 (19)
C7—N2—H2125.6C9—C10—C15120.17 (18)
C2—N2—H2125.6C11—C10—C15120.06 (19)
N1—C1—C6132.4 (2)C12—C11—C10120.10 (19)
N1—C1—C2105.9 (2)C12—C11—H11120.0
C6—C1—C2121.7 (2)C10—C11—H11120.0
N2—C2—C1106.4 (2)C13—C12—C11119.81 (19)
N2—C2—C3132.0 (2)C13—C12—C16122.13 (19)
C1—C2—C3121.5 (2)C11—C12—C16118.02 (18)
C4—C3—C2116.2 (2)C12—C13—C8120.39 (19)
C4—C3—H3121.9C12—C13—H13119.8
C2—C3—H3121.9C8—C13—H13119.8
C3—C4—C5121.9 (3)O1—C14—O2124.6 (2)
C3—C4—H4A119.1O1—C14—C8116.94 (19)
C5—C4—H4A119.1O2—C14—C8118.41 (19)
C6—C5—C4122.0 (3)O3—C15—O4123.5 (2)
C6—C5—H5119.0O3—C15—C10123.5 (2)
C4—C5—H5119.0O4—C15—C10113.00 (18)
C5—C6—C1116.6 (3)O5—C16—O6123.0 (2)
C5—C6—H6A121.7O5—C16—C12122.6 (2)
C1—C6—H6A121.7O6—C16—C12114.39 (19)
N2—C7—N1110.0 (2)H7A—O7—H7B105.2
N2—C7—H7125.0H8A—O8—H8B105.1
N1—C7—H7125.0H9A—O9—H9B105.1
C9—C8—C13119.31 (19)
C7—N1—C1—C6−178.5 (2)C9—C10—C11—C120.3 (3)
C7—N1—C1—C20.8 (3)C15—C10—C11—C12−178.1 (2)
C7—N2—C2—C10.0 (3)C10—C11—C12—C131.1 (3)
C7—N2—C2—C3179.4 (2)C10—C11—C12—C16178.9 (2)
N1—C1—C2—N2−0.4 (2)C11—C12—C13—C8−1.2 (3)
C6—C1—C2—N2178.9 (2)C16—C12—C13—C8−178.9 (2)
N1—C1—C2—C3−179.9 (2)C9—C8—C13—C12−0.1 (3)
C6—C1—C2—C3−0.6 (3)C14—C8—C13—C12177.29 (18)
N2—C2—C3—C4−178.9 (2)C9—C8—C14—O1156.9 (2)
C1—C2—C3—C40.4 (3)C13—C8—C14—O1−20.4 (3)
C2—C3—C4—C5−0.1 (4)C9—C8—C14—O2−22.2 (3)
C3—C4—C5—C6−0.2 (4)C13—C8—C14—O2160.5 (2)
C4—C5—C6—C10.1 (4)C9—C10—C15—O31.2 (3)
N1—C1—C6—C5179.4 (3)C11—C10—C15—O3179.6 (2)
C2—C1—C6—C50.3 (3)C9—C10—C15—O4−178.3 (2)
C2—N2—C7—N10.5 (3)C11—C10—C15—O40.1 (3)
C1—N1—C7—N2−0.8 (3)C13—C12—C16—O5175.6 (2)
C13—C8—C9—C101.5 (3)C11—C12—C16—O5−2.1 (3)
C14—C8—C9—C10−175.82 (19)C13—C12—C16—O6−3.8 (3)
C8—C9—C10—C11−1.6 (3)C11—C12—C16—O6178.4 (2)
C8—C9—C10—C15176.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O9i0.821.732.539 (2)169
O6—H6···O7ii0.821.772.589 (2)176
N1—H1···O8iii0.861.972.812 (3)167
N2—H2···O2iv0.861.872.721 (3)173
O7—H7A···O20.851.922.760 (3)173
O7—H7B···O80.852.092.877 (3)155
O8—H8A···O5v0.851.992.797 (3)159
O8—H8B···O3iii0.851.922.730 (2)160
O9—H9A···O1iv0.851.812.654 (2)173
O9—H9B···O1vi0.851.862.685 (3)163

Symmetry codes: (i) x+1, y, z; (ii) x−1, y+1, z; (iii) x−1, y, z; (iv) x−1, y, z−1; (v) x, y−1, z; (vi) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2189).

References

  • Brandenburg, K. & Berndt, M. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, o1856–o1858.
  • Oxtoby, N. S., Blake, A. J., Champness, N. R. & Wilson, C. (2005). Chem. Eur. J.11, 1–13.
  • Remenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmán, H. R. & Almarsson, Ö. (2003). J. Am. Chem. Soc.125, 8456–8457. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zaworotko, M. J. (2001). Chem. Commun. pp. 1–9.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography