PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1778–o1779.
Published online 2010 June 26. doi:  10.1107/S1600536810023998
PMCID: PMC3006943

(1R,6R,13R,18R)-(Z,Z)-1,18-Bis[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-3,16-dimethyl­ene-8,20-diaza­dispiro­[5.6.5.6]tetra­cosa-7,19-diene

Abstract

The crystal structure of the title compound, C34H54N2O4, has been solved in order to prove the relative and absolute chirality of the newly-formed stereocentres which were established using an asymmetric Diels–Alder reaction at an earlier stage in the synthesis. This unprecedented stable dialdimine contains a 14-membered ring and was obtained as the minor diastereoisomer in the Diels–Alder reaction. The absolute stereochemistry of the stereocentres of the acetal functionality was known to be R based on the use of a chiral (R)-tris­ubstituted dienophile derived from enanti­opure (S)-glyceraldehyde. The assignment of the configuration in the dienophile and the title di-aldimine differs from (S)-glyceraldehyde due to a change in the priority order of the substituents. The crystal structure establishes the presence of six stereocentres all attributed to be R. The 14-membered ring contains two aldimine bonds [C—N = 1.258 (2) and 1.259 (2) Å]. It adopts a similar conformation to that proposed for trans–trans-cyclo­tetra­deca-1,8-dienes.

Related literature

For related structures, see: Allmann (1974 [triangle]); Dale (1966 [triangle]). For background to the spiro­lide family, see: Gill et al. (2003 [triangle]); Guéret & Brimble (2010 [triangle]); Hu et al. (1995 [triangle], 2001 [triangle]). For the applications of Danishefsky’s diene, see: Asano et al. (2006 [triangle]); Danishefsky et al. (1990 [triangle]); Petrzilka & Grayson (1981 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1778-scheme1.jpg

Experimental

Crystal data

  • C34H54N2O4
  • M r = 554.80
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1778-efi1.jpg
  • a = 6.8710 (1) Å
  • b = 10.1701 (2) Å
  • c = 11.7947 (2) Å
  • α = 79.143 (1)°
  • β = 88.043 (1)°
  • γ = 83.855 (1)°
  • V = 804.71 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 93 K
  • 0.36 × 0.19 × 0.1 mm

Data collection

  • Siemens SMART CCD diffractometer
  • 19146 measured reflections
  • 3824 independent reflections
  • 3555 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.091
  • S = 0.92
  • 3824 reflections
  • 365 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Siemens, 1995 [triangle]); cell refinement: SAINT (Siemens, 1995 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023998/dn2578sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023998/dn2578Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Tania Groutso for help with the data collection.

supplementary crystallographic information

Comment

The title spiro-di-aldimine was obtained as part of a synthetic program directed towards the synthesis of the spiroimine unit of the spirolides AD. This family of marine toxins were isolated from the digestive glands of contaminated mussels, scallops and toxic plankton from the East coast of Nova Scotia in Canada and are considered as fast-acting toxins (Hu et al., 1995; Hu et al., 2001; Gill et al., 2003; Guéret & Brimble, 2010). The work demonstrates a new method to access an enantiopure spiro-di-aldimine and an enantiopure bicyclic ketimine in good overall yield. The synthesis of the spiroimine is a synthetic challenge and to date the synthesis of the 7,6-spiroimine moiety of the spirolides has not been achieved. By reaction of a chiral (R)-trisubstituted dienophile derived from (S)-glyceraldehyde with Danishefsky's diene (Asano et al., 2006; Danishefsky et al., 1990; Petrzilka & Grayson, 1981), the resultant Diels-Alder adducts were afforded as a mixture of 3 diastereoisomers in a 5:2:1 ratio. The undesired minor diastereoisomer was used to develop the synthetic route to the desired spiroaldimine. The Diels-Alder adduct was converted to the spiroimine precursor in several steps. Reaction of this advanced azido-aldehyde intermediate with triphenylphosphine surprisingly afforded the stable title dimer instead of the expected 7,6-bicyclic aldimine. The stability of the title dimer is unexpected compared to the known instability of aldimines in general. Given that the stereochemistry at C26 and C32 is known to be R (based on using enantiopure (S)-glyceraldehyde as the starting material), the absolute configuration at C1, C6, C13 and C20 has therefore also been assigned as R. The assignment of configuration of the trisubstituted dienophile and the title di-aldimine differs from the starting (S)-glyceraldehyde due to a change in the priority order of substituents.

The molecular structure, Fig. 1, indicates that the acetal unit and the imine part adopt an axial position in both cyclohexane rings. The 14-membered ring contains two aldimine bonds(C14—N15 1.258 (2),C7—N8 1.259 (2)). It adopts a similar conformation to that proposed for trans-trans cyclotetradeca-1,8-dienes (Dale, 1966) except for an alternate conformation for C17, C18 and C19. A 14-membered tetra-azacyclotetradeca-1,8-diene which has R and S centres shows similar conformational characteristics (Allmann, 1974). The diazaspirocyclotetradecan-7,14-ene molecules assemble in the crystal in linear arrays. Each ring is offset with the six membered rings from a neighbouring molecule aligned over the ring centre, Fig. 2.

Experimental

To 2-(2",2"-dimethyl-1",3"-dioxolan-4"-yl)-4-methylene-1-(4'-azidobutyl)cyclohexane carbaldehyde (7.8 mg, 24 µmol) in toluene-d8 (0.6 ml) was added triphenylphosphine (6.3 mg, 24 µmol). The resulting mixture was stirred for 1 h at room temperature then warmed to 55 °C and stirred at this temperature for 17 h. After cooling to room temperature, the mixture was concentrated in vacuo. The crude imine was purified by column chromatography (20: 80 EtOAc–hexanes) to give the title compound (4.6 mg, 71%) as a white crystalline solid. Dilution in CH2Cl2/hexanes (1: 1, 2 ml) and slow evaporation of the solvent afforded white prisms.

M. P. 171.8–172.3 °C.

HRMS (ESI) calculated for C34H55N2O4 [M + H]+: 555.4156, found 555.4143.

IR (neat) νmax 3060, 2985, 2935, 1675, 1635, 1610, 1455, 1380, 1195, 1065, 895 cm-1.

1H NMR (400 MHz, CDCl3) δ 7.49 (2H, s, 7 and 14-CH=N), 4.60 (4 H, d,J = 28 Hz, 25 and 31-CH2=C), 4.10 (4 H, m, 26 and 32-CH and 27 and 33-CHaHb), 3.60 (2 H, m, 27 and 33-CHaHb), 3.47 (2 H, m, 9 and 16-CHaHb), 3.38 (2 H, m, 9 and 16-CHaHb), 2.23 (2 H, dd, J = 4 and 12 Hz, 2 and 21-CHaHb), 2.11 (6 H, t, J = 4 Hz, 1 and 20-CH and 4 and 23-CH2), 1.94 (2 H, dd, J = 8 and 12 Hz, 2 and 21-CHaHb), 1.71 (6 H, m, 5 and 24-CH2 and 12 and 19-CHaHb), 1.61 (4 H, m, 12 and 19-CHaHb and 10 and 17-CHaHb), 1.45 (2 H, td, J = 4 and 12 Hz, 10 and 17-CHaHb), 1.34 (6 H, s, 29 or 30-CH3 and 35 or 36-CH3), 1.34 (6 H, s, 29 or 30-CH3 and 35 or 36-CH3), 1.22 (2 H, m, 11 and 18-CHaHb), 1.09 (11 and 18-CHaHb).

13C NMR (100 MHz, CDCl3) δ 171.8 (7 and 14-CH=N), 146.7 (3 and 22-C), 108.4 (28 and 34-C), 108.1 (25 and 31-CH2), 76.1 (26 and 32-CHO), 68.6 (27 and 33-CH2O), 60.9 (9 and 16-CH2N), 45.5 (6 and 25-C), 44.6 (1 and 20-CH), 33.4 (12 and 19-CH2), 33.2 (5 and 24-CH2), 33.1 (2 and 21-CH2), 30.9 (4 and 23-CH2), 29.9 (10 and 17-CH2), 26.7 (29 or 30-CH3 and 35 or 36-CH3), 26,3 (29 or 30-CH3 and 35 or 36-CH3), 21.5 (11 and 18-CH2).

m/z (ESI-MS) 195 ([M]+, 100), 278 (40), 220 (12%).

[α]D20 -25.5 (c 1/5, CH2Cl2).

Refinement

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined from the X-ray analyses and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Atoms were placed in calculated positions and a riding model (C–H = 0.93 or 0.97 Å), with Uiso(H) = 1.2 or 1.5 times Ueq(C) was used during refinement.

Figures

Fig. 1.
The molecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
The molecular packing diagram of the title compound, viewed along c axis. The hydrogen atoms have been omitted for clarity.

Crystal data

C34H54N2O4Z = 1
Mr = 554.80F(000) = 304
Triclinic, P1Dx = 1.145 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8710 (1) ÅCell parameters from 6455 reflections
b = 10.1701 (2) Åθ = 1.8–27.9°
c = 11.7947 (2) ŵ = 0.07 mm1
α = 79.143 (1)°T = 93 K
β = 88.043 (1)°Needle, colourless
γ = 83.855 (1)°0.36 × 0.19 × 0.1 mm
V = 804.71 (2) Å3

Data collection

Siemens SMART CCD diffractometer3555 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
graphiteθmax = 27.9°, θmin = 1.8°
ω scansh = −9→9
19146 measured reflectionsk = −13→13
3824 independent reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.92w = 1/[σ2(Fo2) + (0.0645P)2 + 0.1019P] where P = (Fo2 + 2Fc2)/3
3824 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Three restraints for a floating origins were used.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C50.4859 (3)−0.46661 (18)0.09602 (16)0.0179 (3)
H1A0.6114−0.46490.05580.021*
H1B0.5112−0.48820.17820.021*
C40.3776 (3)−0.57809 (18)0.06285 (17)0.0213 (4)
H2A0.3781−0.5684−0.02060.026*
H2B0.4463−0.66500.09420.026*
C30.1690 (3)−0.57332 (19)0.10718 (17)0.0220 (4)
C20.0573 (3)−0.43578 (19)0.07628 (17)0.0203 (4)
H4A−0.0731−0.43830.11030.024*
H4B0.0441−0.4122−0.00690.024*
C10.1606 (3)−0.32679 (18)0.11917 (16)0.0157 (3)
H50.0887−0.23940.08890.019*
C60.3720 (3)−0.32518 (17)0.06741 (15)0.0154 (3)
C190.4921 (3)−0.22460 (17)0.11200 (15)0.0168 (3)
H7A0.5030−0.25150.19510.020*
H7B0.6233−0.23270.07930.020*
C180.4100 (3)−0.07590 (18)0.08484 (16)0.0181 (4)
H8A0.4276−0.04190.00300.022*
H8B0.2705−0.06890.10190.022*
C170.5083 (3)0.01164 (19)0.15356 (16)0.0217 (4)
H9A0.43200.09880.14530.026*
H9B0.5053−0.02970.23460.026*
C160.7199 (3)0.03345 (19)0.11786 (16)0.0204 (4)
H10A0.77250.08620.16790.024*
H10B0.7985−0.05290.12670.024*
C140.8639 (3)0.05893 (18)−0.06562 (16)0.0172 (3)
H110.9483−0.0144−0.03140.021*
C130.8986 (3)0.11417 (17)−0.19270 (15)0.0158 (3)
C120.8646 (3)−0.00132 (17)−0.25696 (15)0.0166 (3)
H13A0.87600.0318−0.33930.020*
H13B0.9680−0.0739−0.23630.020*
C110.6682 (3)−0.05878 (18)−0.23246 (16)0.0185 (4)
H14A0.56360.0120−0.25640.022*
H14B0.6535−0.0900−0.15000.022*
C100.6486 (3)−0.17543 (19)−0.29504 (16)0.0211 (4)
H15A0.6386−0.1407−0.37730.025*
H15B0.7658−0.2383−0.28270.025*
C90.4705 (3)−0.25019 (19)−0.25415 (16)0.0200 (4)
H16A0.3527−0.1878−0.26490.024*
H16B0.4596−0.3191−0.29970.024*
C70.3587 (3)−0.27786 (17)−0.06275 (15)0.0168 (3)
H170.2497−0.2210−0.09220.020*
C241.1175 (3)0.13759 (19)−0.20847 (16)0.0186 (4)
H24A1.19660.0552−0.17580.022*
H24B1.14850.1584−0.29030.022*
C231.1716 (3)0.2520 (2)−0.15120 (18)0.0228 (4)
H19A1.15770.2268−0.06800.027*
H19B1.30700.2674−0.16920.027*
C221.0408 (3)0.37918 (19)−0.19363 (17)0.0215 (4)
C210.8255 (3)0.36185 (18)−0.17768 (16)0.0192 (4)
H21A0.75000.4456−0.21080.023*
H21B0.79450.3424−0.09580.023*
C200.7648 (3)0.24717 (17)−0.23484 (15)0.0161 (3)
H220.63110.2313−0.20850.019*
C250.0869 (4)−0.6775 (2)0.1672 (2)0.0326 (5)
H23A0.1591−0.76120.18480.039*
H23B−0.0430−0.66670.19170.039*
C260.1524 (3)−0.34631 (18)0.25092 (15)0.0177 (3)
H240.2561−0.41510.28410.021*
C27−0.0430 (3)−0.3762 (2)0.30981 (17)0.0253 (4)
H25A−0.1517−0.32690.26440.030*
H25B−0.0578−0.47160.32250.030*
C280.0987 (3)−0.2278 (2)0.39969 (16)0.0252 (4)
C29−0.0117 (5)−0.0934 (3)0.4064 (2)0.0448 (7)
H27A−0.0607−0.09390.48370.067*
H27B−0.1193−0.07650.35400.067*
H27C0.0743−0.02400.38580.067*
C300.2597 (4)−0.2692 (3)0.4873 (2)0.0409 (6)
H28A0.3296−0.35270.47580.061*
H28B0.2036−0.28030.56370.061*
H28C0.3482−0.20090.47800.061*
C311.1091 (3)0.4943 (2)−0.2410 (2)0.0293 (4)
H29A1.24340.4991−0.24920.035*
H29B1.02280.5704−0.26600.035*
C320.7610 (3)0.28862 (18)−0.36663 (16)0.0186 (4)
H300.89240.2709−0.39900.022*
C330.6765 (3)0.4318 (2)−0.41643 (17)0.0232 (4)
H31A0.56550.4606−0.37080.028*
H31B0.77450.4945−0.42070.028*
C340.5546 (3)0.28908 (19)−0.52033 (16)0.0232 (4)
C360.3332 (3)0.2966 (2)−0.5167 (2)0.0309 (5)
H33A0.28330.3430−0.45640.046*
H33B0.29350.2072−0.50200.046*
H33C0.28250.3443−0.58950.046*
C350.6449 (4)0.2274 (2)−0.61933 (19)0.0352 (5)
H34A0.60400.1391−0.61450.053*
H34B0.78500.2209−0.61520.053*
H34C0.60310.2829−0.69120.053*
N150.7312 (2)0.10360 (16)−0.00257 (14)0.0188 (3)
N80.4889 (2)−0.31236 (15)−0.13220 (13)0.0183 (3)
O1−0.0310 (2)−0.33110 (17)0.41672 (13)0.0323 (4)
O20.1763 (2)−0.22053 (14)0.28513 (11)0.0225 (3)
O30.6256 (2)0.21281 (14)−0.41259 (12)0.0250 (3)
O40.6178 (2)0.42036 (14)−0.52929 (12)0.0261 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C50.0147 (8)0.0156 (8)0.0226 (9)−0.0016 (7)−0.0016 (7)−0.0012 (7)
C40.0204 (9)0.0150 (8)0.0286 (10)−0.0041 (7)0.0015 (7)−0.0036 (7)
C30.0213 (10)0.0216 (9)0.0257 (10)−0.0065 (7)−0.0005 (8)−0.0081 (7)
C20.0145 (8)0.0245 (9)0.0235 (9)−0.0059 (7)−0.0016 (7)−0.0066 (7)
C10.0120 (8)0.0160 (7)0.0190 (8)−0.0015 (6)−0.0016 (6)−0.0026 (6)
C60.0138 (8)0.0144 (8)0.0181 (8)−0.0028 (6)−0.0007 (6)−0.0023 (6)
C190.0152 (8)0.0162 (8)0.0191 (8)−0.0026 (7)−0.0017 (7)−0.0029 (7)
C180.0173 (9)0.0176 (8)0.0189 (8)−0.0023 (7)0.0006 (7)−0.0022 (7)
C170.0286 (10)0.0175 (9)0.0202 (9)−0.0065 (7)0.0057 (8)−0.0050 (7)
C160.0259 (10)0.0197 (8)0.0172 (8)−0.0076 (7)0.0013 (7)−0.0048 (7)
C140.0165 (9)0.0162 (8)0.0196 (8)−0.0024 (7)−0.0028 (7)−0.0044 (7)
C130.0152 (9)0.0155 (8)0.0177 (8)−0.0030 (6)0.0009 (7)−0.0049 (6)
C120.0167 (8)0.0153 (8)0.0179 (8)−0.0023 (7)0.0021 (7)−0.0036 (6)
C110.0191 (9)0.0166 (8)0.0206 (8)−0.0039 (7)0.0023 (7)−0.0046 (7)
C100.0237 (9)0.0220 (9)0.0198 (8)−0.0078 (7)0.0043 (7)−0.0075 (7)
C90.0239 (9)0.0202 (8)0.0182 (8)−0.0075 (7)0.0004 (7)−0.0064 (7)
C70.0163 (9)0.0141 (8)0.0199 (8)−0.0021 (7)−0.0027 (7)−0.0020 (6)
C240.0131 (8)0.0202 (9)0.0230 (9)−0.0020 (7)0.0022 (7)−0.0052 (7)
C230.0162 (9)0.0232 (9)0.0301 (10)−0.0050 (7)0.0022 (8)−0.0068 (8)
C220.0226 (10)0.0216 (9)0.0226 (9)−0.0061 (8)0.0028 (7)−0.0087 (7)
C210.0209 (9)0.0147 (8)0.0223 (9)−0.0023 (7)0.0024 (7)−0.0046 (7)
C200.0145 (8)0.0156 (8)0.0180 (8)−0.0030 (6)0.0024 (6)−0.0022 (6)
C250.0293 (11)0.0237 (10)0.0451 (13)−0.0077 (8)0.0085 (10)−0.0061 (9)
C260.0191 (9)0.0159 (8)0.0176 (8)−0.0039 (7)−0.0003 (7)−0.0008 (6)
C270.0243 (10)0.0339 (11)0.0185 (9)−0.0090 (8)0.0015 (8)−0.0040 (8)
C280.0303 (11)0.0298 (10)0.0159 (8)−0.0079 (8)0.0021 (8)−0.0032 (7)
C290.0646 (18)0.0409 (13)0.0276 (11)0.0057 (12)0.0111 (11)−0.0115 (10)
C300.0420 (14)0.0545 (15)0.0261 (11)−0.0148 (12)−0.0092 (10)0.0001 (10)
C310.0250 (10)0.0236 (10)0.0409 (12)−0.0096 (8)0.0057 (9)−0.0073 (9)
C320.0189 (9)0.0162 (8)0.0205 (8)−0.0044 (7)0.0006 (7)−0.0015 (6)
C330.0249 (10)0.0201 (9)0.0234 (9)−0.0025 (8)−0.0019 (8)−0.0008 (7)
C340.0277 (10)0.0212 (9)0.0186 (9)−0.0031 (8)−0.0005 (8)0.0025 (7)
C360.0266 (11)0.0340 (11)0.0306 (11)−0.0048 (9)−0.0026 (9)−0.0005 (9)
C350.0470 (14)0.0316 (11)0.0243 (10)0.0027 (10)0.0038 (10)−0.0028 (9)
N150.0205 (8)0.0176 (7)0.0186 (7)−0.0051 (6)0.0020 (6)−0.0026 (6)
N80.0202 (8)0.0151 (7)0.0209 (7)−0.0064 (6)0.0011 (6)−0.0044 (6)
O10.0334 (9)0.0466 (10)0.0200 (7)−0.0171 (7)0.0064 (6)−0.0085 (7)
O20.0295 (8)0.0223 (6)0.0174 (6)−0.0072 (6)0.0051 (5)−0.0067 (5)
O30.0331 (8)0.0200 (6)0.0213 (7)−0.0086 (6)−0.0082 (6)0.0024 (5)
O40.0322 (8)0.0218 (7)0.0220 (7)−0.0065 (6)−0.0028 (6)0.0039 (5)

Geometric parameters (Å, °)

C5—C41.536 (3)C24—C231.535 (3)
C5—C61.546 (2)C24—H24A0.9700
C5—H1A0.9700C24—H24B0.9700
C5—H1B0.9700C23—C221.506 (3)
C4—C31.507 (3)C23—H19A0.9700
C4—H2A0.9700C23—H19B0.9700
C4—H2B0.9700C22—C311.326 (3)
C3—C251.327 (3)C22—C211.509 (3)
C3—C21.509 (3)C21—C201.552 (2)
C2—C11.547 (2)C21—H21A0.9700
C2—H4A0.9700C21—H21B0.9700
C2—H4B0.9700C20—C321.532 (3)
C1—C261.529 (2)C20—H220.9800
C1—C61.557 (2)C25—H23A0.9300
C1—H50.9800C25—H23B0.9300
C6—C71.523 (2)C26—O21.439 (2)
C6—C191.554 (2)C26—C271.523 (3)
C19—C181.535 (2)C26—H240.9800
C19—H7A0.9700C27—O11.428 (2)
C19—H7B0.9700C27—H25A0.9700
C18—C171.531 (3)C27—H25B0.9700
C18—H8A0.9700C28—O21.427 (2)
C18—H8B0.9700C28—O11.430 (3)
C17—C161.527 (3)C28—C291.505 (3)
C17—H9A0.9700C28—C301.511 (3)
C17—H9B0.9700C29—H27A0.9600
C16—N151.468 (2)C29—H27B0.9600
C16—H10A0.9700C29—H27C0.9600
C16—H10B0.9700C30—H28A0.9600
C14—N151.258 (2)C30—H28B0.9600
C14—C131.518 (2)C30—H28C0.9600
C14—H110.9300C31—H29A0.9300
C13—C241.547 (3)C31—H29B0.9300
C13—C121.554 (2)C32—O31.449 (2)
C13—C201.560 (2)C32—C331.524 (3)
C12—C111.525 (3)C32—H300.9800
C12—H13A0.9700C33—O41.433 (2)
C12—H13B0.9700C33—H31A0.9700
C11—C101.530 (2)C33—H31B0.9700
C11—H14A0.9700C34—O41.432 (2)
C11—H14B0.9700C34—O31.430 (2)
C10—C91.526 (3)C34—C361.514 (3)
C10—H15A0.9700C34—C351.512 (3)
C10—H15B0.9700C36—H33A0.9600
C9—N81.462 (2)C36—H33B0.9600
C9—H16A0.9700C36—H33C0.9600
C9—H16B0.9700C35—H34A0.9600
C7—N81.259 (2)C35—H34B0.9600
C7—H170.9300C35—H34C0.9600
C4—C5—C6113.61 (15)C23—C24—H24B109.0
C4—C5—H1A108.8C13—C24—H24B109.0
C6—C5—H1A108.8H24A—C24—H24B107.8
C4—C5—H1B108.8C22—C23—C24110.26 (16)
C6—C5—H1B108.8C22—C23—H19A109.6
H1A—C5—H1B107.7C24—C23—H19A109.6
C3—C4—C5112.00 (16)C22—C23—H19B109.6
C3—C4—H2A109.2C24—C23—H19B109.6
C5—C4—H2A109.2H19A—C23—H19B108.1
C3—C4—H2B109.2C31—C22—C23122.99 (19)
C5—C4—H2B109.2C31—C22—C21123.65 (19)
H2A—C4—H2B107.9C23—C22—C21113.35 (16)
C25—C3—C4124.92 (19)C22—C21—C20112.61 (15)
C25—C3—C2121.83 (19)C22—C21—H21A109.1
C4—C3—C2113.25 (16)C20—C21—H21A109.1
C3—C2—C1111.92 (15)C22—C21—H21B109.1
C3—C2—H4A109.2C20—C21—H21B109.1
C1—C2—H4A109.2H21A—C21—H21B107.8
C3—C2—H4B109.2C32—C20—C21111.26 (15)
C1—C2—H4B109.2C32—C20—C13113.04 (14)
H4A—C2—H4B107.9C21—C20—C13110.28 (14)
C26—C1—C2110.97 (15)C32—C20—H22107.3
C26—C1—C6113.77 (14)C21—C20—H22107.3
C2—C1—C6109.36 (14)C13—C20—H22107.3
C26—C1—H5107.5C3—C25—H23A120.0
C2—C1—H5107.5C3—C25—H23B120.0
C6—C1—H5107.5H23A—C25—H23B120.0
C7—C6—C5110.47 (14)O2—C26—C27100.21 (15)
C7—C6—C19105.98 (14)O2—C26—C1109.10 (14)
C5—C6—C19108.03 (14)C27—C26—C1117.03 (15)
C7—C6—C1108.50 (14)O2—C26—H24110.0
C5—C6—C1110.72 (14)C27—C26—H24110.0
C19—C6—C1113.04 (14)C1—C26—H24110.0
C18—C19—C6116.21 (14)O1—C27—C26102.98 (16)
C18—C19—H7A108.2O1—C27—H25A111.2
C6—C19—H7A108.2C26—C27—H25A111.2
C18—C19—H7B108.2O1—C27—H25B111.2
C6—C19—H7B108.2C26—C27—H25B111.2
H7A—C19—H7B107.4H25A—C27—H25B109.1
C17—C18—C19112.92 (15)O2—C28—O1106.40 (15)
C17—C18—H8A109.0O2—C28—C29107.56 (17)
C19—C18—H8A109.0O1—C28—C29110.7 (2)
C17—C18—H8B109.0O2—C28—C30110.74 (19)
C19—C18—H8B109.0O1—C28—C30107.89 (18)
H8A—C18—H8B107.8C29—C28—C30113.4 (2)
C16—C17—C18114.97 (15)C28—C29—H27A109.5
C16—C17—H9A108.5C28—C29—H27B109.5
C18—C17—H9A108.5H27A—C29—H27B109.5
C16—C17—H9B108.5C28—C29—H27C109.5
C18—C17—H9B108.5H27A—C29—H27C109.5
H9A—C17—H9B107.5H27B—C29—H27C109.5
N15—C16—C17110.75 (16)C28—C30—H28A109.5
N15—C16—H10A109.5C28—C30—H28B109.5
C17—C16—H10A109.5H28A—C30—H28B109.5
N15—C16—H10B109.5C28—C30—H28C109.5
C17—C16—H10B109.5H28A—C30—H28C109.5
H10A—C16—H10B108.1H28B—C30—H28C109.5
N15—C14—C13125.76 (16)C22—C31—H29A120.0
N15—C14—H11117.1C22—C31—H29B120.0
C13—C14—H11117.1H29A—C31—H29B120.0
C14—C13—C24107.37 (14)O3—C32—C33100.30 (15)
C14—C13—C12105.58 (14)O3—C32—C20109.32 (15)
C24—C13—C12107.31 (14)C33—C32—C20117.28 (15)
C14—C13—C20111.65 (14)O3—C32—H30109.8
C24—C13—C20110.94 (14)C33—C32—H30109.8
C12—C13—C20113.61 (14)C20—C32—H30109.8
C11—C12—C13115.48 (15)O4—C33—C32102.53 (15)
C11—C12—H13A108.4O4—C33—H31A111.3
C13—C12—H13A108.4C32—C33—H31A111.3
C11—C12—H13B108.4O4—C33—H31B111.3
C13—C12—H13B108.4C32—C33—H31B111.3
H13A—C12—H13B107.5H31A—C33—H31B109.2
C12—C11—C10112.45 (15)O4—C34—O3106.23 (15)
C12—C11—H14A109.1O4—C34—C36110.57 (17)
C10—C11—H14A109.1O3—C34—C36108.03 (16)
C12—C11—H14B109.1O4—C34—C35108.48 (17)
C10—C11—H14B109.1O3—C34—C35110.33 (17)
H14A—C11—H14B107.8C36—C34—C35112.99 (19)
C9—C10—C11112.78 (16)C34—C36—H33A109.5
C9—C10—H15A109.0C34—C36—H33B109.5
C11—C10—H15A109.0H33A—C36—H33B109.5
C9—C10—H15B109.0C34—C36—H33C109.5
C11—C10—H15B109.0H33A—C36—H33C109.5
H15A—C10—H15B107.8H33B—C36—H33C109.5
N8—C9—C10110.21 (15)C34—C35—H34A109.5
N8—C9—H16A109.6C34—C35—H34B109.5
C10—C9—H16A109.6H34A—C35—H34B109.5
N8—C9—H16B109.6C34—C35—H34C109.5
C10—C9—H16B109.6H34A—C35—H34C109.5
H16A—C9—H16B108.1H34B—C35—H34C109.5
N8—C7—C6122.82 (16)C14—N15—C16117.19 (16)
N8—C7—H17118.6C7—N8—C9118.06 (16)
C6—C7—H17118.6C27—O1—C28107.81 (15)
C23—C24—C13113.04 (15)C28—O2—C26107.24 (14)
C23—C24—H24A109.0C34—O3—C32108.65 (14)
C13—C24—H24A109.0C34—O4—C33107.11 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2578).

References

  • Allmann, R. (1974). Cryst. Struct. Commun.3, 83–86.
  • Asano, M., Inoue, M., Watanabe, K., Abe, H. & Katoh, T. (2006). J. Org. Chem.71, 6942–6951. [PubMed]
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Dale, J. (1966). Angew. Chem. Int. Ed.5, 1000–1021.
  • Danishefsky, S., Kitahara, T. & Schuda, P. F. (1990). Org. Synth. Coll.7, 312–315.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gill, S., Murphy, M., Clausen, J., Richard, D., Quilliam, M., MacKinnon, S., LaBlanc, P., Mueller, R. & Pulido, O. (2003). Neurotoxicology, 24, 593–604. [PubMed]
  • Guéret, S. M. & Brimble, M. A. (2010). Nat. Prod. Rep. In the press.
  • Hu, T. M., Burton, I. W., Cembella, A. D., Curtis, J. M., Quilliam, M. A., Walter, J. A. & Wright, J. L. C. (2001). J. Nat. Prod.64, 308–312. [PubMed]
  • Hu, T., Curtis, J. M., Oshima, Y., Quilliam, M. A., Walter, J. A., Watson-Wright, W. M. & Wright, J. L. C. (1995). J. Chem. Soc. Chem. Commun. pp. 2159–2161.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Petrzilka, M. & Grayson, J. I. (1981). Synthesis, pp. 753–786.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1995). SMART and SAINT . Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography