PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m857–m858.
Published online 2010 June 26. doi:  10.1107/S160053681002458X
PMCID: PMC3006941

trans-Tetra­kis(4-methyl­pyridine-κN)dioxidorhenium(V) hexa­fluorido­phosphate

Abstract

The title compound, [ReO2(C6H7N)4]PF6, contains octa­hedral [ReO2(4-Mepy)4]+ cations (4-Mepy is 4-methyl­pyridine) and PF6 anions. Both the cation and the anion reside on special positions, the Re atom on a crystallographic center of inversion and the P atom on a C 2 axis parallel to the b axis. The ReV atom in the cation exhibits an octa­hedral coordination geometry with two O atoms in the apical positions and four N atoms of the 4-Mepy ligands in the equatorial plane. The Re=O and Re—N bond lengths fall in the typical ranges of trans-dioxidorhenium(V) complexes.

Related literature

For rhenium(V) complexes as radiopharmaceuticals, see: Dilworth & Parrott (1998 [triangle]); Volkert & Hoffman (1999 [triangle]). trans-Dioxidorhenium(V) ReO2 + complexes exhibit inter­esting properties as redox- and photo-active catalysts, see: Grey et al. (2004 [triangle]); Pipes & Meyer (1985 [triangle]); Thorp et al. (1989 [triangle]). For the synthesis of the title compound, see: Brewer & Gray (1989 [triangle]). For the crystal structures of trans-dioxidorhenium(V) complexes, see: Bélanger & Beauchamp (1996 [triangle]); Canlier et al. (2010 [triangle]); Gancheff et al. (2006 [triangle]); Kochel (2006 [triangle]); Kremer et al. (1996 [triangle]); Machura et al. (2008 [triangle]); Luck & O’Neill (2001 [triangle]); Reddy et al. (1999 [triangle]); Siczek et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m857-scheme1.jpg

Experimental

Crystal data

  • [ReO2(C6H7N)4]PF6
  • M r = 735.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m857-efi1.jpg
  • a = 10.4914 (4) Å
  • b = 19.5359 (8) Å
  • c = 14.0923 (5) Å
  • β = 109.5810 (11)°
  • V = 2721.31 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.60 mm−1
  • T = 173 K
  • 0.26 × 0.13 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.354, T max = 0.576
  • 12743 measured reflections
  • 3113 independent reflections
  • 2556 reflections with F 2 > 2σ(F 2)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.044
  • S = 1.16
  • 3113 reflections
  • 175 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (CrystalMaker, 2007 [triangle]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002458X/zq2045sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002458X/zq2045Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Japan Society for Promotion of Science (JSPS).

supplementary crystallographic information

Comment

Rhenium(V) complexes as radiopharmaceuticals for therapy and diagnosis continue to attract attention, because rhenium isotopes have suitable radionuclear properties for the applications, i.e., 186Re: Emax = 1.1 MeV for β-emission and Emax = 0.137 MeV for γ-emission with t1/2 = 90.6 h, 188Re: Emax = 2.1 MeV for β-emission and Emax = 0.155 MeV for γ-emission with t1/2 = 17 h (Dilworth & Parrott, 1998; Volkert & Hoffman, 1999). On the other hand, trans-dioxorhenium(V) ReO2+ complexes have been known to exhibit interesting properties as redox- and photo-active catalysts (Grey et al., 2004; Pipes & Meyer, 1985; Thorp et al.,1989). To our knowledge, the title compound of formula [ReO2(4-Mepy)4]+.PF6- (4-Mepy = 4-methylpyridine) (I) was already synthesized by Brewer & Gray (Brewer & Gray, 1989), but a crystallographic characterization has not been yet reported. In this article, we report the X-ray crystal structure of the title compound.

Complex I crystallized in the centrosymmetric space group C2/c. The crystal structure is constructed by the packing of [ReO2(4-Mepy)4]+ cations and octahedral PF6- anions as shown Figs. 1 and 2. The Re atom is located on a crystallographic center of inversion and the P atom lies on a C2 axis parallel to the b axis. The ReV atom in the cation exhibits an octahedral coordination geometry with two O atoms in the apical positions and four N atoms of the 4-Mepy ligands in the equatorial plane. The Re═O and Re—N bond lengths fall in the typical ranges of trans-dioxorhenium(V) complexes. No classical hydrogen bonds are observed in the crystal structure. The N1—Re1—N2 bond angle and all N—Re1═O angles are almost 90 °. The bond lengths of Re1—O1N, Re1—N1, and Re1—N2 are 1.769 (2), 2.147 (2) and 2.146 (2) Å, respectively. These values are similar to those found for other trans-dioxorhenium(V) complexes (Bélanger & Beauchamp, 1996; Canlier et al., 2010; Gancheff et al., 2006; Kochel, 2006; Kremer et al., 1996; Machura et al., 2008; Luck & O'Neill, 2001; Reddy et al., 1999; Siczek et al., 2009).

Experimental

The title complex was synthesized according to the literature method by Brewer & Gray (Brewer & Gray, 1989). [ReO2(PPh3)2]I was reacted with 4-Mepy in methanol and the resulting [ReO2(4-Mepy)4]I was reacted with NH4PF6 in methanol.

Refinement

All H atoms were positionated geometrically, with C—H = 0.95 and 0.98 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the [ReO2(4-Mepy)4]+ cation and PF6- anion with 50% thermal ellipsoids. Hydrogen atoms are omitted clarity.
Fig. 2.
Packing view of the [ReO2(4-Mepy)4]+ (stick) and PF6- (octahedron) along the c axis.

Crystal data

[ReO2(C6H7N)4]PF6F(000) = 1440.00
Mr = 735.68Dx = 1.796 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 13289 reflections
a = 10.4914 (4) Åθ = 3.1–27.4°
b = 19.5359 (8) ŵ = 4.60 mm1
c = 14.0923 (5) ÅT = 173 K
β = 109.5810 (11)°Block, orange
V = 2721.31 (18) Å30.26 × 0.13 × 0.12 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3113 independent reflections
Radiation source: fine-focus sealed tube2556 reflections with F2 > 2σ(F2)
graphiteRint = 0.021
Detector resolution: 10.00 pixels mm-1θmax = 27.4°
ω scansh = −12→13
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −25→25
Tmin = 0.354, Tmax = 0.576l = −18→18
12743 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 1.16w = 1/[σ2(Fo2) + (0.0157P)2 + 6.0203P] where P = (Fo2 + 2Fc2)/3
3113 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = −0.39 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Re10.75000.25000.50000.02256 (4)
P10.50000.04791 (6)0.75000.0334 (2)
F10.5776 (2)0.10485 (15)0.8276 (2)0.0838 (8)
F20.6185 (2)0.04807 (14)0.70289 (19)0.0670 (6)
F30.4238 (3)−0.00954 (16)0.6730 (2)0.0962 (10)
O10.90491 (19)0.29340 (10)0.52054 (14)0.0268 (4)
N10.7527 (2)0.27819 (12)0.64789 (17)0.0257 (4)
N20.8575 (2)0.15747 (12)0.55935 (16)0.0249 (4)
C10.6844 (3)0.24197 (16)0.6970 (2)0.0311 (6)
C20.6861 (3)0.25974 (15)0.7926 (2)0.0331 (6)
C30.7583 (3)0.31654 (15)0.8417 (2)0.0311 (6)
C40.8272 (3)0.35354 (15)0.7905 (2)0.0319 (6)
C50.8225 (2)0.33362 (15)0.6953 (2)0.0294 (5)
C60.7652 (3)0.33635 (18)0.9466 (2)0.0440 (8)
C70.9942 (3)0.15588 (16)0.5950 (2)0.0331 (6)
C81.0667 (3)0.09651 (17)0.6268 (2)0.0372 (6)
C91.0011 (3)0.03451 (16)0.6232 (2)0.0323 (6)
C100.8602 (3)0.03686 (16)0.5894 (2)0.0365 (6)
C110.7926 (3)0.09779 (15)0.5586 (2)0.0313 (6)
C121.0782 (3)−0.03129 (17)0.6533 (2)0.0418 (7)
H10.63370.20310.66500.037*
H20.63730.23280.82490.040*
H40.87800.39280.82090.038*
H50.87040.36000.66170.035*
H6A0.71070.30440.97060.053*
H6B0.72990.38290.94580.053*
H6C0.85940.33470.99160.053*
H71.04230.19750.59820.040*
H81.16280.09810.65140.045*
H100.8102−0.00400.58760.044*
H110.69650.09770.53600.038*
H12A1.0144−0.06930.64530.050*
H12B1.1370−0.02840.72380.050*
H12C1.1334−0.03910.61030.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Re10.01850 (7)0.02494 (7)0.02294 (7)−0.00157 (8)0.00521 (5)0.00297 (7)
P10.0302 (5)0.0239 (5)0.0474 (6)0.00000.0145 (4)0.0000
F10.0809 (19)0.0820 (19)0.0810 (18)−0.0331 (15)0.0174 (14)−0.0387 (15)
F20.0484 (13)0.0881 (18)0.0769 (15)−0.0047 (12)0.0375 (12)0.0053 (14)
F30.095 (2)0.084 (2)0.127 (2)−0.0475 (17)0.0597 (19)−0.0657 (18)
O10.0204 (9)0.0301 (10)0.0288 (9)−0.0027 (7)0.0066 (7)0.0020 (8)
N10.0213 (11)0.0257 (10)0.0284 (11)0.0004 (9)0.0062 (9)0.0022 (9)
N20.0233 (11)0.0277 (11)0.0229 (10)−0.0007 (9)0.0065 (8)0.0027 (8)
C10.0310 (13)0.0327 (16)0.0304 (13)−0.0047 (12)0.0110 (10)0.0022 (12)
C20.0357 (15)0.0348 (18)0.0317 (13)0.0025 (12)0.0150 (11)0.0065 (12)
C30.0330 (15)0.0319 (15)0.0272 (13)0.0116 (12)0.0084 (11)0.0046 (11)
C40.0310 (15)0.0281 (14)0.0333 (14)0.0021 (12)0.0062 (11)−0.0013 (11)
C50.0275 (14)0.0303 (14)0.0295 (13)−0.0015 (11)0.0084 (11)0.0029 (11)
C60.063 (2)0.0379 (17)0.0343 (16)0.0082 (16)0.0204 (15)0.0007 (13)
C70.0248 (14)0.0338 (15)0.0378 (15)−0.0013 (12)0.0066 (11)0.0063 (12)
C80.0242 (14)0.0424 (17)0.0413 (16)0.0057 (13)0.0062 (12)0.0076 (13)
C90.0362 (16)0.0335 (15)0.0267 (13)0.0085 (12)0.0099 (11)0.0030 (11)
C100.0362 (16)0.0288 (15)0.0425 (16)−0.0022 (13)0.0106 (13)0.0028 (12)
C110.0250 (14)0.0326 (15)0.0344 (15)−0.0008 (12)0.0073 (11)0.0039 (12)
C120.0445 (19)0.0348 (17)0.0448 (18)0.0137 (14)0.0135 (14)0.0044 (14)

Geometric parameters (Å, °)

Re1—O11.7688 (19)C4—C51.382 (4)
Re1—O1i1.7688 (19)C7—C81.377 (4)
Re1—N12.147 (2)C8—C91.386 (4)
Re1—N1i2.147 (2)C9—C101.394 (4)
Re1—N22.146 (2)C9—C121.502 (4)
Re1—N2i2.146 (2)C10—C111.379 (4)
P1—F11.581 (2)C1—H10.950
P1—F1ii1.581 (2)C2—H20.950
P1—F21.593 (2)C4—H40.950
P1—F2ii1.593 (2)C5—H50.950
P1—F31.579 (3)C6—H6A0.980
P1—F3ii1.579 (3)C6—H6B0.980
N1—C11.351 (4)C6—H6C0.980
N1—C51.352 (3)C7—H70.950
N2—C71.352 (3)C8—H80.950
N2—C111.348 (3)C10—H100.950
C1—C21.386 (4)C11—H110.950
C2—C31.390 (3)C12—H12A0.980
C3—C41.384 (4)C12—H12B0.980
C3—C61.506 (4)C12—H12C0.980
O1—Re1—O1i180.00 (12)C2—C3—C6122.2 (3)
O1—Re1—N190.33 (9)C4—C3—C6121.1 (2)
O1—Re1—N1i89.67 (9)C3—C4—C5120.3 (2)
O1—Re1—N290.35 (8)N1—C5—C4122.9 (2)
O1—Re1—N2i89.65 (8)N2—C7—C8122.8 (2)
O1i—Re1—N189.67 (9)C7—C8—C9120.7 (2)
O1i—Re1—N1i90.33 (9)C8—C9—C10116.2 (2)
O1i—Re1—N289.65 (8)C8—C9—C12121.6 (2)
O1i—Re1—N2i90.35 (8)C10—C9—C12122.2 (2)
N1—Re1—N1i180.00 (12)C9—C10—C11120.7 (2)
N1—Re1—N290.20 (8)N2—C11—C10122.6 (2)
N1—Re1—N2i89.80 (8)N1—C1—H1119.0
N1i—Re1—N289.80 (8)C2—C1—H1119.0
N1i—Re1—N2i90.20 (8)C1—C2—H2119.6
N2—Re1—N2i180.00 (12)C3—C2—H2119.6
F1—P1—F1ii90.54 (15)C3—C4—H4119.9
F1—P1—F289.65 (15)C5—C4—H4119.9
F1—P1—F2ii90.19 (15)N1—C5—H5118.6
F1—P1—F3179.37 (16)C4—C5—H5118.6
F1—P1—F3ii90.02 (14)C3—C6—H6A109.5
F1ii—P1—F290.19 (15)C3—C6—H6B109.5
F1ii—P1—F2ii89.65 (15)C3—C6—H6C109.5
F1ii—P1—F390.02 (14)H6A—C6—H6B109.5
FPii—P1—F3ii179.37 (14)H6A—C6—H6C109.5
F2—P1—F2ii179.78 (16)H6B—C6—H6C109.5
F2—P1—F390.06 (16)N2—C7—H7118.6
F2—P1—F3ii90.10 (16)C8—C7—H7118.6
F2ii—P1—F390.10 (16)C7—C8—H8119.6
F2ii—P1—F3ii90.06 (16)C9—C8—H8119.6
F3—P1—F3ii89.41 (16)C9—C10—H10119.6
Re1—N1—C1121.74 (18)C11—C10—H10119.6
Re1—N1—C5120.9 (2)N2—C11—H11118.7
C1—N1—C5117.3 (2)C10—C11—H11118.7
Re1—N2—C7121.15 (19)C9—C12—H12A109.5
Re1—N2—C11121.84 (18)C9—C12—H12B109.5
C7—N2—C11116.9 (2)C9—C12—H12C109.5
N1—C1—C2122.1 (2)H12A—C12—H12B109.5
C1—C2—C3120.8 (3)H12A—C12—H12C109.5
C2—C3—C4116.7 (2)H12B—C12—H12C109.5

Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2045).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bélanger, S. & Beauchamp, A. L. (1996). Inorg. Chem.35, 7836–7844.
  • Brewer, J. C. & Gray, H. B. (1989). Inorg. Chem.28, 3334–3336.
  • Canlier, A., Kawasaki, T., Chowdhury, S. & Ikeda, Y. (2010). Inorg. Chim. Acta, 363, 1–7.
  • CrystalMaker (2007). CrystalMaker CrystalMaker Software Ltd, Yarnton, England.
  • Dilworth, J. R. & Parrott, S. J. (1998). Chem. Soc. Rev.27, 43–55.
  • Gancheff, J. S., Kremer, C., Ventura, O. N., Domínguez, S., Bazzicalupi, C., Bianchi, A., Suescun, L. & Mombrú, A. W. (2006). New J. Chem.30, 1650–1654.
  • Grey, J. K., Butler, I. S. & Reber, C. (2004). Can. J. Chem.82, 1083–1091.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Kochel, A. (2006). Acta Cryst. E62, m1740–m1742.
  • Kremer, C., Kremer, E., Domínguez, S., Chinea, E., Mederos, A. & Castiñeiras, A. (1996). Polyhedron, 15, 4341–4347.
  • Luck, R. L. & O’Neill, R. S. (2001). Polyhedron, 20, 773–782.
  • Machura, B., Kruszynski, R., Penczek, R., Mroziński, J. & Kusz, J. (2008). Polyhedron, 27, 797–804.
  • Pipes, D. W. & Meyer, T. J. (1985). J. Am. Chem. Soc.107, 7201–7202.
  • Reddy, K. R., Domingos, Â., Paulo, A. & Santos, I. (1999). Inorg. Chem.38, 4278–4282.
  • Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siczek, M., Krawczyk, M. S. & Lis, T. (2009). Acta Cryst. E65, m1057. [PMC free article] [PubMed]
  • Thorp, H. H., Houten, J. V. & Gray, H. B. (1989). Inorg. Chem.28, 889–892.
  • Volkert, W. A. & Hoffman, T. J. (1999). Chem. Rev.99, 2269–2292. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography