PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1548–o1549.
Published online 2010 June 5. doi:  10.1107/S160053681001963X
PMCID: PMC3006932

9-Benzyl-10-methyl­acridinium trifluoro­methane­sulfonate

Abstract

In the crystal structure of the title compound, C21H18N+·CF3OS3 , the cations form inversion dimers through π–π inter­actions between the acridine ring systems. These dimers are further linked by C—H(...)π inter­actions. The cations and anions are connected by C—H(...)O, C—F(...)π and S—O(...)π inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 76.8 (1)°with respect to each other. The acridine moieties are either parallel or inclined at an angle of 62.4 (1)° in the crystal structure.

Related literature

For general background to acridinium derivatives, see: King et al. (2007 [triangle]); Roda et al. (2003 [triangle]); Wróblewska et al. (2004 [triangle]); Trzybiński et al. (2010 [triangle]); Zomer & Jacquemijns (2001 [triangle]). For related structures, see: Sikorski et al. (2007 [triangle]); Trzybiński et al. (2010 [triangle]). For inter­molecular inter­actions, see: Bianchi et al. (2004 [triangle]); Dorn et al. (2005 [triangle]); Hunter et al. (2001 [triangle]); Novoa et al. (2006 [triangle]); Takahashi et al. (2001 [triangle]). For the synthesis, see: Huntress & Shaw (1948 [triangle]); Sikorski et al. (2007 [triangle]); Trzybiński et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1548-scheme1.jpg

Experimental

Crystal data

  • C21H18N+·CF3O3S
  • M r = 433.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1548-efi9.jpg
  • a = 14.6211 (7) Å
  • b = 8.2514 (2) Å
  • c = 17.2900 (8) Å
  • β = 107.707 (5)°
  • V = 1987.12 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 295 K
  • 0.41 × 0.25 × 0.08 mm

Data collection

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.953, T max = 0.988
  • 16520 measured reflections
  • 3528 independent reflections
  • 2191 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.153
  • S = 1.06
  • 3528 reflections
  • 272 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
C–F(...)π and S–O(...)π inter­actions (Å,°)
Table 3
π–π inter­actions (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001963X/om2343sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001963X/om2343Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was financed by the State Funds for Scientific Research (grant DS No. 8220-4-0087-9).

supplementary crystallographic information

Comment

Quaternary N-methylacridinium cations substituted in position 9 undergo oxidation with H2O2 or other oxidants in alkaline media accompanied by chemiluminescence (Zomer & Jacquemijns, 2001). The emission that originates from electronically excited 10-methyl-9-acridinone, the oxidation product, is affected by the features of the substituent in position 9. For these reasons various acridine derivatives of the above type have been synthesized and investigated from the point of view of their chemiluminogenic ability and applicability in immunological, biological, chemical and environmental analyses (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007). Continuing the search for 9-substituted acridinium derivatives with chemiluminogenic potential (Wróblewska et al., 2004; Trzybiński et al., 2010), we synthesized 9-benzyl-10-methylacridinium trifluoromethanesulfonate whose crystal structure is presented here.

In the crystal structure, the inversely oriented cations form dimers through multidirectional π–π interactions involving acridine moieties (Table 3, Fig. 2). These dimers are linked by C–H···O (Table 1, Figs. 1 and 2), C–F···π (acridine) (Table 2, Fig. 2) and S–O···π (acridine) (Table 2, Fig. 2) interactions with adjacent anions, and by C–H···π (phenyl) (Table 1, Fig. 2) interactions with neighboring cations. The C–H···O interactions are of the hydrogen bond type (Bianchi et al., 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005), S–O···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0427 (3) Å and 0.0066 (3) Å, the acridine and benzene ring systems are oriented at 76.8 (1)°. The acridine moieties in pairs are parallel (remain at an angle of 0.0 (1)°), while in adjacent pairs they are inclined at an angle of 62.4 (1)°. The mutual arrangement of the acridine and benzene ring systems, as well as the acridine skeletons in the crystal lattice is similar in the compound investigated and its precursor – 9-benzylacridine (Sikorski et al., 2007).

Experimental

9-Benzylacridine was prepared by treating N-phenylaniline with an equimolar amount of phenylacetic acid, both dispersed in molten zinc chloride (Huntress & Shaw, 1948; Sikorski et al., 2007). The crude product was purified chromatographically (SiO2, cyclohexane-ethyl acetate, 5:2 v/v). The compound thus obtained was quaternarized with a five-fold molar excess of methyltrifluoromethanesulfonate dissolved in anhydrous dichloromethane (Trzybiński et al., 2010). The crude 9-benzyl-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered, and precipitated with a 25 v/v excess of diethyl ether. Light-orange crystals suitable for X-Ray investigations were grown from absolute ethanol solution (m.p. 478–480 K).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å, 0.96 Å and 0.97 Å for the aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the aliphatic H atoms.

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. ...
Fig. 2.
The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π, S–O···π ...

Crystal data

C21H18N+·CF3O3SF(000) = 896
Mr = 433.44Dx = 1.449 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5587 reflections
a = 14.6211 (7) Åθ = 3.2–29.2°
b = 8.2514 (2) ŵ = 0.22 mm1
c = 17.2900 (8) ÅT = 295 K
β = 107.707 (5)°Plate, light-orange
V = 1987.12 (15) Å30.41 × 0.25 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer3528 independent reflections
Radiation source: Enhanced (Mo) X-ray Source2191 reflections with I > 2σ(I)
graphiteRint = 0.048
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.3°
ω scansh = −17→12
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)k = −9→9
Tmin = 0.953, Tmax = 0.988l = −20→20
16520 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0814P)2 + 0.218P] where P = (Fo2 + 2Fc2)/3
3528 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.0142 (2)0.2164 (4)0.5705 (2)0.0680 (10)
H11.03410.18380.62450.082*
C21.0692 (3)0.1812 (4)0.5215 (3)0.0870 (13)
H21.12670.12510.54190.104*
C31.0384 (4)0.2302 (5)0.4410 (3)0.0919 (14)
H31.07600.20370.40810.110*
C40.9568 (3)0.3141 (4)0.4080 (3)0.0793 (11)
H40.93950.34510.35380.095*
C50.6717 (3)0.5685 (3)0.4389 (2)0.0616 (9)
H50.65660.61030.38660.074*
C60.6130 (3)0.5955 (4)0.4840 (3)0.0703 (10)
H60.55720.65540.46200.084*
C70.6331 (2)0.5369 (4)0.5617 (2)0.0641 (9)
H70.59030.55510.59110.077*
C80.7146 (2)0.4531 (3)0.59546 (18)0.0515 (8)
H80.72750.41550.64840.062*
C90.8675 (2)0.3374 (3)0.58718 (16)0.0416 (7)
N100.8163 (2)0.4426 (3)0.42625 (14)0.0545 (7)
C110.9266 (2)0.3027 (3)0.53895 (18)0.0490 (8)
C120.8982 (2)0.3545 (3)0.45600 (19)0.0536 (8)
C130.7815 (2)0.4203 (3)0.55233 (15)0.0411 (7)
C140.7575 (2)0.4760 (3)0.47112 (18)0.0486 (8)
C150.8974 (2)0.2879 (3)0.67532 (17)0.0514 (8)
H15A0.86410.35590.70390.062*
H15B0.96570.30760.69870.062*
C160.8769 (2)0.1104 (3)0.68912 (16)0.0450 (7)
C170.7896 (2)0.0396 (3)0.64921 (19)0.0565 (8)
H170.74310.09910.61110.068*
C180.7708 (2)−0.1185 (4)0.6653 (2)0.0623 (9)
H180.7117−0.16450.63830.075*
C190.8388 (3)−0.2080 (4)0.72059 (19)0.0661 (10)
H190.8256−0.31410.73200.079*
C200.9259 (3)−0.1408 (4)0.7590 (2)0.0739 (11)
H200.9730−0.20220.79540.089*
C210.9445 (3)0.0179 (4)0.74392 (18)0.0627 (9)
H211.00380.06310.77130.075*
C220.7881 (3)0.4991 (6)0.3401 (2)0.0921 (13)
H22A0.77890.61440.33830.138*
H22B0.72940.44700.30980.138*
H22C0.83790.47210.31670.138*
S230.84575 (6)0.55745 (8)0.14455 (5)0.0509 (3)
O240.8608 (2)0.4008 (3)0.17948 (15)0.0869 (8)
O250.87049 (18)0.6881 (3)0.20097 (14)0.0771 (7)
O260.75711 (18)0.5802 (3)0.08205 (16)0.0925 (8)
C270.9326 (2)0.5715 (3)0.09040 (19)0.0553 (8)
F281.01928 (18)0.5412 (4)0.13525 (16)0.1322 (11)
F290.9156 (2)0.4660 (3)0.03015 (15)0.1090 (9)
F300.9335 (2)0.7119 (3)0.05685 (18)0.1184 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.051 (2)0.0523 (17)0.102 (3)−0.0032 (16)0.025 (2)−0.0051 (18)
C20.062 (3)0.061 (2)0.147 (4)−0.0002 (18)0.045 (3)−0.014 (3)
C30.098 (4)0.074 (3)0.133 (4)−0.020 (2)0.078 (3)−0.035 (3)
C40.094 (3)0.070 (2)0.092 (3)−0.021 (2)0.055 (3)−0.021 (2)
C50.063 (2)0.0494 (17)0.058 (2)−0.0072 (16)−0.0032 (18)0.0132 (15)
C60.058 (2)0.0511 (18)0.092 (3)0.0070 (16)0.007 (2)−0.0005 (19)
C70.055 (2)0.0556 (18)0.082 (3)0.0044 (16)0.0208 (19)−0.0152 (18)
C80.057 (2)0.0479 (16)0.0494 (17)−0.0042 (15)0.0155 (16)−0.0066 (13)
C90.0406 (17)0.0361 (14)0.0437 (16)−0.0092 (12)0.0063 (14)−0.0046 (12)
N100.0601 (18)0.0573 (14)0.0459 (14)−0.0176 (13)0.0158 (13)0.0010 (12)
C110.0440 (18)0.0397 (14)0.065 (2)−0.0079 (13)0.0191 (16)−0.0050 (14)
C120.061 (2)0.0460 (16)0.064 (2)−0.0236 (15)0.0350 (18)−0.0155 (15)
C130.0463 (17)0.0345 (13)0.0397 (15)−0.0065 (12)0.0091 (13)−0.0031 (12)
C140.054 (2)0.0409 (15)0.0485 (18)−0.0132 (13)0.0121 (16)0.0005 (13)
C150.0536 (19)0.0475 (16)0.0480 (17)−0.0013 (13)0.0078 (15)0.0024 (13)
C160.0483 (18)0.0450 (15)0.0387 (15)−0.0019 (13)0.0088 (14)−0.0037 (12)
C170.0489 (19)0.0520 (17)0.0626 (19)−0.0003 (14)0.0081 (16)−0.0030 (15)
C180.061 (2)0.0570 (19)0.069 (2)−0.0097 (16)0.0209 (18)−0.0068 (17)
C190.101 (3)0.0482 (17)0.055 (2)−0.0102 (19)0.032 (2)−0.0009 (16)
C200.095 (3)0.058 (2)0.053 (2)0.004 (2)−0.0001 (19)0.0128 (16)
C210.068 (2)0.0598 (19)0.0486 (18)−0.0066 (16)0.0000 (17)0.0059 (15)
C220.095 (3)0.134 (3)0.046 (2)−0.025 (3)0.020 (2)0.017 (2)
S230.0509 (5)0.0466 (4)0.0560 (5)−0.0018 (3)0.0174 (4)−0.0017 (3)
O240.131 (2)0.0614 (14)0.0900 (17)0.0137 (14)0.0658 (17)0.0192 (13)
O250.0813 (18)0.0706 (14)0.0855 (16)−0.0086 (12)0.0343 (14)−0.0294 (13)
O260.0492 (15)0.114 (2)0.1010 (19)−0.0060 (14)0.0025 (14)−0.0007 (16)
C270.058 (2)0.0492 (17)0.060 (2)0.0005 (15)0.0213 (17)0.0023 (15)
F280.0559 (15)0.234 (3)0.1091 (19)0.0300 (17)0.0292 (14)0.015 (2)
F290.159 (3)0.0953 (15)0.1012 (17)−0.0266 (15)0.0826 (17)−0.0321 (13)
F300.156 (2)0.0668 (13)0.172 (2)0.0008 (14)0.108 (2)0.0329 (14)

Geometric parameters (Å, °)

C1—C21.364 (5)C13—C141.416 (4)
C1—C111.421 (4)C15—C161.528 (4)
C1—H10.9300C15—H15A0.9700
C2—C31.387 (6)C15—H15B0.9700
C2—H20.9300C16—C211.374 (4)
C3—C41.346 (6)C16—C171.382 (4)
C3—H30.9300C17—C181.378 (4)
C4—C121.403 (5)C17—H170.9300
C4—H40.9300C18—C191.367 (4)
C5—C61.342 (5)C18—H180.9300
C5—C141.428 (4)C19—C201.363 (5)
C5—H50.9300C19—H190.9300
C6—C71.372 (5)C20—C211.378 (4)
C6—H60.9300C20—H200.9300
C7—C81.348 (4)C21—H210.9300
C7—H70.9300C22—H22A0.9600
C8—C131.425 (4)C22—H22B0.9600
C8—H80.9300C22—H22C0.9600
C9—C131.396 (4)S23—O241.415 (2)
C9—C111.402 (4)S23—O251.425 (2)
C9—C151.508 (4)S23—O261.425 (2)
N10—C141.350 (4)S23—C271.796 (3)
N10—C121.361 (4)C27—F281.293 (4)
N10—C221.495 (4)C27—F301.297 (3)
C11—C121.432 (4)C27—F291.322 (3)
C2—C1—C11120.1 (4)C9—C15—C16114.0 (2)
C2—C1—H1120.0C9—C15—H15A108.8
C11—C1—H1120.0C16—C15—H15A108.8
C1—C2—C3119.2 (4)C9—C15—H15B108.8
C1—C2—H2120.4C16—C15—H15B108.8
C3—C2—H2120.4H15A—C15—H15B107.7
C4—C3—C2123.4 (4)C21—C16—C17118.1 (3)
C4—C3—H3118.3C21—C16—C15120.4 (3)
C2—C3—H3118.3C17—C16—C15121.5 (2)
C3—C4—C12119.6 (4)C18—C17—C16120.6 (3)
C3—C4—H4120.2C18—C17—H17119.7
C12—C4—H4120.2C16—C17—H17119.7
C6—C5—C14120.2 (3)C19—C18—C17120.4 (3)
C6—C5—H5119.9C19—C18—H18119.8
C14—C5—H5119.9C17—C18—H18119.8
C5—C6—C7121.7 (3)C20—C19—C18119.6 (3)
C5—C6—H6119.2C20—C19—H19120.2
C7—C6—H6119.2C18—C19—H19120.2
C8—C7—C6120.2 (4)C19—C20—C21120.3 (3)
C8—C7—H7119.9C19—C20—H20119.9
C6—C7—H7119.9C21—C20—H20119.9
C7—C8—C13121.9 (3)C16—C21—C20121.1 (3)
C7—C8—H8119.1C16—C21—H21119.5
C13—C8—H8119.1C20—C21—H21119.5
C13—C9—C11118.7 (3)N10—C22—H22A109.5
C13—C9—C15121.0 (3)N10—C22—H22B109.5
C11—C9—C15120.2 (3)H22A—C22—H22B109.5
C14—N10—C12122.2 (3)N10—C22—H22C109.5
C14—N10—C22118.6 (3)H22A—C22—H22C109.5
C12—N10—C22119.2 (3)H22B—C22—H22C109.5
C9—C11—C1121.4 (3)O24—S23—O25115.13 (15)
C9—C11—C12119.4 (3)O24—S23—O26115.57 (17)
C1—C11—C12119.2 (3)O25—S23—O26113.74 (15)
N10—C12—C4122.0 (3)O24—S23—C27103.79 (14)
N10—C12—C11119.5 (3)O25—S23—C27103.62 (15)
C4—C12—C11118.5 (3)O26—S23—C27102.73 (16)
C9—C13—C14120.4 (3)F28—C27—F30107.4 (3)
C9—C13—C8122.6 (2)F28—C27—F29105.1 (3)
C14—C13—C8117.0 (3)F30—C27—F29105.1 (3)
N10—C14—C13119.6 (3)F28—C27—S23113.2 (2)
N10—C14—C5121.5 (3)F30—C27—S23113.3 (2)
C13—C14—C5118.9 (3)F29—C27—S23112.0 (2)
C11—C1—C2—C3−0.2 (5)C12—N10—C14—C5−179.9 (2)
C1—C2—C3—C41.2 (6)C22—N10—C14—C5−2.4 (4)
C2—C3—C4—C12−0.6 (6)C9—C13—C14—N102.8 (4)
C14—C5—C6—C70.4 (5)C8—C13—C14—N10−177.3 (2)
C5—C6—C7—C81.6 (5)C9—C13—C14—C5−176.4 (2)
C6—C7—C8—C13−0.9 (4)C8—C13—C14—C53.5 (4)
C13—C9—C11—C1−179.0 (2)C6—C5—C14—N10177.8 (3)
C15—C9—C11—C12.0 (4)C6—C5—C14—C13−3.0 (4)
C13—C9—C11—C120.7 (4)C13—C9—C15—C1699.8 (3)
C15—C9—C11—C12−178.3 (2)C11—C9—C15—C16−81.1 (3)
C2—C1—C11—C9178.5 (3)C9—C15—C16—C21136.1 (3)
C2—C1—C11—C12−1.2 (4)C9—C15—C16—C17−45.8 (4)
C14—N10—C12—C4177.2 (3)C21—C16—C17—C181.1 (5)
C22—N10—C12—C4−0.4 (4)C15—C16—C17—C18−177.0 (3)
C14—N10—C12—C11−3.7 (4)C16—C17—C18—C19−0.5 (5)
C22—N10—C12—C11178.8 (3)C17—C18—C19—C20−1.0 (5)
C3—C4—C12—N10178.3 (3)C18—C19—C20—C211.9 (5)
C3—C4—C12—C11−0.9 (5)C17—C16—C21—C20−0.2 (5)
C9—C11—C12—N102.8 (4)C15—C16—C21—C20177.9 (3)
C1—C11—C12—N10−177.5 (2)C19—C20—C21—C16−1.3 (5)
C9—C11—C12—C4−178.0 (3)O24—S23—C27—F28−54.1 (3)
C1—C11—C12—C41.7 (4)O25—S23—C27—F2866.5 (3)
C11—C9—C13—C14−3.5 (4)O26—S23—C27—F28−174.8 (3)
C15—C9—C13—C14175.5 (2)O24—S23—C27—F30−176.8 (3)
C11—C9—C13—C8176.6 (2)O25—S23—C27—F30−56.1 (3)
C15—C9—C13—C8−4.4 (4)O26—S23—C27—F3062.5 (3)
C7—C8—C13—C9178.3 (2)O24—S23—C27—F2964.6 (3)
C7—C8—C13—C14−1.7 (4)O25—S23—C27—F29−174.8 (2)
C12—N10—C14—C130.9 (4)O26—S23—C27—F29−56.2 (2)
C22—N10—C14—C13178.5 (3)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O26i0.932.493.398 (5)167
C3—H3···Cg4ii0.932.743.630 (5)161
C15—H15B···O25iii0.972.493.423 (4)160
C22—H22B···O25iv0.962.563.386 (5)144
C22—H22C···O240.962.563.361 (5)141

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+2, −y, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+3/2, y−1/2, −z+1/2.

Table 2 C–F···π and S–O···π interactions (Å,°)

Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.

XIJI···JX···JXI···J
C27F30Cg3v3.115 (3)4.233 (3)143.0 (2)
S23O26Cg1v3.085 (3)4.167 (2)131.4 (2)

Symmetry code: (v) –x + 3/2, y + 1/2, –z + 1/2.

Table 3 π–π interactions (Å, °)

Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
12iii3.806 (2)2.11 (15)3.575 (2)1.306 (2)
21iii3.806 (2)2.11 (15)3.530 (2)1.423 (2)
22iii3.886 (2)0.02 (15)3.563 (2)1.551 (2)

Symmetry code: (iii) –x + 2, –y + 1, –z + 1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2343).

References

  • Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. [PubMed]
  • Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
  • Huntress, E. H. & Shaw, E. N. (1948). J. Org. Chem.13, 674–675. [PubMed]
  • King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O’Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem.79, 4169–4176. [PubMed]
  • Novoa, J. J., Mota, F. & D’Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem.A75, 462–470.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sikorski, A., Kowalska, K., Krzymiński, K. & Błażejowski, J. (2007). Acta Cryst. E63, o2670–o2672.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  • Trzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826–o827. [PMC free article] [PubMed]
  • Wróblewska, A., Huta, O. M., Midyanyj, S. V., Patsay, I. O., Rak, J. & Błażejowski, J. (2004). J. Org. Chem.69, 1607–1614. [PubMed]
  • Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography