PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1667.
Published online 2010 June 16. doi:  10.1107/S1600536810022191
PMCID: PMC3006927

1-Chloro­methyl-4-nitro­benzene

Abstract

In the title compound, C7H6ClNO2, the nitro group is almost coplanar with the aromatic ring [dihedral angle = 2.9 (2)°], but the Cl atom deviates from the ring plane by 1.129 (1) Å. In the crystal, mol­ecules are linked by weak C—H(...)O inter­actions to generate chains.

Related literature

For background on the toxicity of nitro-aromatic compounds, see: Moreno et al. (1986 [triangle]). For the synthesis of the title compound, see: Livermore & Sealock (1947 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1667-scheme1.jpg

Experimental

Crystal data

  • C7H6ClNO2
  • M r = 171.58
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1667-efi1.jpg
  • a = 4.7434 (1) Å
  • b = 6.4189 (2) Å
  • c = 24.9413 (11) Å
  • V = 759.40 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 296 K
  • 0.35 × 0.11 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • 4389 measured reflections
  • 1816 independent reflections
  • 1586 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.103
  • S = 1.04
  • 1816 reflections
  • 100 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.34 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 662 Freidel pairs
  • Flack parameter: 0.02 (11)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]), PARST (Nardelli, 1983 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810022191/hb5491sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022191/hb5491Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission for providing financial support. Professor Islam Ullah Khan is also gratefully acknowledged for providing single-crystal X-ray diffraction facilities at the Materials Chemistry Laboratory, GC University Lahore.

supplementary crystallographic information

Comment

The irreversible binding of the reductive intermediates of nitroaromatic compounds to protein and DNA is thought to be responsible for the carcinogenicity and mutagenicity of this class of compounds. Several studies revealed that some nitro radical metabolites with special features are expected to decompose to form neutral carbon-centered free radicals with not net reduction of the nitro group occurring. The radicals anions of p-and o-nitrobenzyl chloride are known to expel chloride to form the corresponding carbon-centered nitrobenzyl radicals with rate constants of 1 × 104 and 4 × 103 s-1. Such species are highly reactive and could account for the unusual cytotoxicity of these nitrocompounds (Moreno et al., 1986). This structural report on 1-(chloromethyl)-4-nitrobenzene (p-nitrobenzyl chloride) might be helpful to carry out such studies on these nitroaromatic compounds in future.

The title molecule (I), (Fig. 1), is non-planar and the dihedral angle between the plane of the NO2 group and benzene (C1–C6) ring is 2.9 (2)°, while the C5—C4—C7—Cl1 torsion angle is 83.8 (2)°. In (I), the bond lengths (Allen et al., 1987) and angles have values within the normal ranges.

In the crystal structure, there is no classic hydrogen bonds. A weak intermolecular C—H···O interaction contrubutes to the stability of the structure (Table 1, Fig. 2).

Experimental

The title p-nitrobenzyl chloride was prepared by adding 5.3 ml of benzyl chloride slowly and with stirring to 27.5 ml of a mixture of equal parts of concentrated nitric and sulfuric acids cooled to 283 K. The temperature rose to 303 K during the 10 min required for the addition. The mixture was stirred for 30 min and then poured into 50 g of crushed ice. The crude material was recrystallized from ethanol. Product obtained was dissolved in ethanol and crystallized by slow evaporation of the solvent to yield colourless needles of (I) in an over-all yield of 46% (Livermore & Sealock, 1947).

Refinement

H atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The crystal packing and the hydrogen bonding of (I) viewed down the a-axis. H-atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C7H6ClNO2F(000) = 352
Mr = 171.58Dx = 1.501 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1957 reflections
a = 4.7434 (1) Åθ = 3.3–26.7°
b = 6.4189 (2) ŵ = 0.45 mm1
c = 24.9413 (11) ÅT = 296 K
V = 759.40 (4) Å3Needle, colourless
Z = 40.35 × 0.11 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer1586 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.018
graphiteθmax = 28.3°, θmin = 3.3°
[var phi] and ω scansh = −5→6
4389 measured reflectionsk = −8→5
1816 independent reflectionsl = −33→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.103w = 1/[σ2(Fo2) + (0.049P)2 + 0.1709P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1816 reflectionsΔρmax = 0.33 e Å3
100 parametersΔρmin = −0.34 e Å3
0 restraintsAbsolute structure: Flack (1983), 662 Freidel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (11)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.75015 (18)0.45250 (12)0.22343 (3)0.0812 (3)
O11.4188 (4)−0.3381 (3)0.07002 (7)0.0621 (6)
O21.4761 (4)−0.0854 (3)0.01453 (7)0.0601 (6)
N11.3647 (3)−0.1634 (3)0.05351 (7)0.0434 (5)
C11.1532 (4)−0.0398 (3)0.08269 (7)0.0364 (5)
C21.0829 (4)0.1540 (3)0.06377 (7)0.0421 (6)
C30.8901 (4)0.2704 (3)0.09215 (8)0.0437 (6)
C40.7690 (4)0.1928 (3)0.13883 (7)0.0393 (5)
C50.8402 (5)−0.0046 (3)0.15629 (8)0.0472 (6)
C61.0341 (5)−0.1235 (3)0.12836 (8)0.0459 (6)
C70.5663 (5)0.3213 (4)0.17034 (8)0.0533 (7)
H21.163700.205600.032500.0510*
H30.840400.402300.080000.0520*
H50.75690−0.058000.187100.0570*
H61.08280−0.256300.140000.0550*
H7A0.420400.232800.185300.0640*
H7B0.477100.422900.147100.0640*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0957 (5)0.0831 (5)0.0647 (4)0.0041 (4)0.0047 (4)−0.0299 (3)
O10.0677 (11)0.0514 (9)0.0671 (10)0.0222 (8)−0.0024 (8)0.0041 (8)
O20.0584 (10)0.0629 (11)0.0591 (9)0.0072 (8)0.0175 (8)0.0010 (8)
N10.0412 (8)0.0450 (9)0.0440 (8)0.0046 (8)−0.0047 (7)−0.0051 (7)
C10.0336 (8)0.0382 (9)0.0374 (8)0.0008 (7)−0.0048 (7)−0.0001 (7)
C20.0446 (10)0.0451 (11)0.0366 (9)0.0024 (9)0.0012 (7)0.0076 (8)
C30.0496 (11)0.0409 (10)0.0406 (9)0.0079 (9)−0.0016 (8)0.0079 (8)
C40.0362 (9)0.0460 (10)0.0357 (8)0.0024 (9)−0.0033 (7)−0.0008 (7)
C50.0526 (11)0.0495 (12)0.0394 (9)−0.0012 (9)0.0046 (8)0.0080 (8)
C60.0500 (11)0.0405 (10)0.0471 (10)0.0015 (9)0.0001 (9)0.0084 (8)
C70.0510 (12)0.0613 (13)0.0475 (11)0.0111 (12)0.0033 (9)−0.0004 (10)

Geometric parameters (Å, °)

Cl1—C71.795 (2)C4—C71.491 (3)
O1—N11.222 (3)C5—C61.383 (3)
O2—N11.215 (2)C2—H20.9300
N1—C11.472 (3)C3—H30.9300
C1—C21.372 (3)C5—H50.9300
C1—C61.380 (3)C6—H60.9300
C2—C31.377 (3)C7—H7A0.9700
C3—C41.391 (3)C7—H7B0.9700
C4—C51.382 (3)
O1—N1—O2123.83 (19)C1—C2—H2121.00
O1—N1—C1118.12 (17)C3—C2—H2121.00
O2—N1—C1118.05 (18)C2—C3—H3120.00
N1—C1—C2118.98 (16)C4—C3—H3120.00
N1—C1—C6118.51 (17)C4—C5—H5120.00
C2—C1—C6122.51 (18)C6—C5—H5120.00
C1—C2—C3118.48 (17)C1—C6—H6121.00
C2—C3—C4120.69 (18)C5—C6—H6121.00
C3—C4—C5119.43 (18)Cl1—C7—H7A110.00
C3—C4—C7120.64 (18)Cl1—C7—H7B110.00
C5—C4—C7119.93 (18)C4—C7—H7A110.00
C4—C5—C6120.65 (18)C4—C7—H7B110.00
C1—C6—C5118.22 (18)H7A—C7—H7B108.00
Cl1—C7—C4109.58 (16)
O1—N1—C1—C2−177.90 (18)C1—C2—C3—C4−0.2 (3)
O1—N1—C1—C62.4 (3)C2—C3—C4—C5−1.0 (3)
O2—N1—C1—C22.4 (3)C2—C3—C4—C7178.30 (19)
O2—N1—C1—C6−177.28 (19)C3—C4—C5—C61.2 (3)
N1—C1—C2—C3−178.37 (17)C7—C4—C5—C6−178.1 (2)
C6—C1—C2—C31.3 (3)C3—C4—C7—Cl1−95.5 (2)
N1—C1—C6—C5178.55 (18)C5—C4—C7—Cl183.8 (2)
C2—C1—C6—C5−1.1 (3)C4—C5—C6—C1−0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7B···O1i0.972.483.396 (3)158

Symmetry codes: (i) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5491).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Livermore, A. H. & Sealock, R. R. (1947). J. Biol. Chem.167, 699–704. [PubMed]
  • Moreno, S. N. J., Schreiber, J. & Mason, R. P. (1986). J. Biol. Chem.261, 7811–7815. [PubMed]
  • Nardelli, M. (1983). Comput. Chem.7, 95–98.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography