PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1695.
Published online 2010 June 18. doi:  10.1107/S1600536810022890
PMCID: PMC3006916

2′-Eth­oxy-1,3,3-trimethyl­spiro­[indoline-2,3′-3H-naphtho­[2,1-b][1,4]oxazine]

Abstract

In the title compound, C24H24N2O2, the five-membered ring of the indoline ring system adopts an envelope conformation with the spiro C atom at the flap. The dihedral angle between the benzene ring of the indoline ring system and the naphthalene ring system is 71.70 (7)°. In the crystal structure, pair of weak C—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For applications of spiro­oxazines, see: Chibisov & Gardner (1999 [triangle]); Khairutdinov et al. (1998 [triangle]); Pozzo et al. (1993 [triangle]); Tan et al. (2005 [triangle]); Zhang et al. (2008 [triangle]). For related structures, see: Lin et al. (2009 [triangle]); Uznanski et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1695-scheme1.jpg

Experimental

Crystal data

  • C24H24N2O2
  • M r = 372.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1695-efi1.jpg
  • a = 8.6105 (4) Å
  • b = 22.9239 (8) Å
  • c = 10.2022 (5) Å
  • β = 93.516 (4)°
  • V = 2009.98 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.34 × 0.30 × 0.20 mm

Data collection

  • Oxford Xcalibur Gemini ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009 [triangle]) T min = 0.974, T max = 0.984
  • 12650 measured reflections
  • 4449 independent reflections
  • 2198 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.085
  • S = 0.98
  • 4449 reflections
  • 257 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022890/is2559sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022890/is2559Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the National Natural Science Foundation of China (project Nos. 50702054 and 20803070) and the Analysis and Testing Foundation of Zhejiang Province (project Nos. 2008 F70034 and 2008 F70053).

supplementary crystallographic information

Comment

Serve as an organic photochromic, spirooxazines have real or potential applications in many field, such as protection, decoration, display, memory, switches, photography, photometry and photomechanics (Chibisov & Gardner, 1999). For further approach to real applications, numerous types of spirooxazine derivatives have been reported over the past several decades (Pozzo et al., 1993; Khairutdinov et al., 1998; Zhang et al., 2008). Traditionally, synthesis of spirooxazines is based on a thermal condensation reaction of the corresponding alkylidene heterocycle or its conjugate acid with ortho-hydroxynitroso aromatic derivatives in most polar organic solvents. To be notice, alkylidene heterocycle, such as: 1,3,3-trimethyl-2- methyleneindoline derivatives, were not stable in the air at room temperature, so they must be purified by vacuum distillation before use (Tan et al., 2005). This brings to a big problem that we have to re-synthesis alkylidene heterocycle part if we want to get a novel spirooxazine with different substituents at alkylidene heterocycle moiety. According to our previous work (Lin et al., 2009) in which we reported a new strategy to get a 2'-position substituted spirooxazine, a new derivative, 1,3,3-trimethyl-2'-ethoxy-1,3-dihydrospiro(indole-2,3'-naphtho(2,1-b) (1,4)oxazine), (II), has been synthesized and its crystal structure is reported here.

Since we synthesized an unexpected new organic photochromic compound, (2S)-2'-ethoxy-1,3,3-trimethyl-6'-(piperidin-1-yl) spiro[indoline-2,3'-3'H-naphtho[2,1-b][1,4]oxazine], we studied on the possibility of the ethoxy reaction at the 2'-position of spirooxazine using another spirooxazine derivative, C22H20N2O, (I). The title compound, C24H24N2O2, (II), was synthesized successfully (Fig. 1), which testified it is a general method to fabricate ethoxy-substituted (may be alkoxy-substituted) spirooxazines at the C2'carbon atom of the C2'=N1' bond.

The title compound, C24H24N2O2, consists of an ethoxy group bonded to parent molecule (I) at the 2'-position crystallizing with a molecule in the asymmetric unit (Fig. 2). The five-membered ring C1/N2/C6–C8 adopts an envelope conformation with the flap at C8. The dihedral angle between the benzene ring (atoms C1–C6) and the naphthalene ring (atoms C10–C19) is 71.70 (7)°. For the other 2'-position substituted derivatives (C23H22N2O2, C27H24N2O2 and C29H33N3O2), the corresponding dihedral angles are 74.2 (1), 76.5 (6) and 71.6 (2)/72.7 (2)°, respectively (Uznanski et al., 2001; Lin et al., 2009). The bond lengths and angles around the spiro carbon in (II) are similar to those in the other photochromic spirooxazines.

Experimental

Potassium iodide (17 mg, 0.1 mmol) and the parent spirooxazine, 1,3,3-trimethylspiro[indoline-2,3'-[3H]-naphth[2,1-b][1,4]oxazine] (33 mg, 0.1 mmol) were heated in a Teflon-lined stainless steel autoclave with ethanol (10 ml) at 393 K. Block-shaped colorless crystals of (II), were obtained by slow evaporation from the filtrated reaction solution at room temperature. Yield: 45% (with reaction solution left). m.p.: 418–419 K. IR (KBr, cm-1): 3053, 2982, 2964, 2888, 1724, 1714, 1637, 1609, 1577, 1508, 1490, 1466, 1398, 1383, 1367, 1321, 1296, 1267, 1252, 1232, 1198, 1188, 1153, 1140, 1101, 1086, 1037, 1024, 993, 977, 952, 895, 862, 816, 781, 750, 743, 683, 655, 632, 606, 566, 551, 516, 499, 437. 1H NMR (CDCl3): δ 6.56–8.47 (10H, ArH), 4.58 (2H, CH2), 2.94 (3H, CH3), 1.42 (3H, CH3), 1.22 (6H, CH3). Analysis found (calculated) for C24H24N2O2: C 77.35 (77.39), H 6.60 (6.49), N 7.50% (7.52%).

Refinement

The H atoms were placed in their calculated positions (C—H = 0.93–0.97 Å) and included in the refinement using the riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.
Synthesis of the title compound, (II).
Fig. 2.
The structure of (II), showing the atom-labeling scheme of the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 3.
A packing diagram of (II), viewed along the a axis.

Crystal data

C24H24N2O2F(000) = 792
Mr = 372.45Dx = 1.231 Mg m3
Monoclinic, P21/cMelting point: 418 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.6105 (4) ÅCell parameters from 3384 reflections
b = 22.9239 (8) Åθ = 3.2–27.3°
c = 10.2022 (5) ŵ = 0.08 mm1
β = 93.516 (4)°T = 293 K
V = 2009.98 (15) Å3Block, colorless
Z = 40.34 × 0.30 × 0.20 mm

Data collection

Oxford Xcalibur Gemini ultra diffractometer4449 independent reflections
Radiation source: fine-focus sealed tube2198 reflections with I > 2σ(I)
graphiteRint = 0.033
Detector resolution: 10.3592 pixels mm-1θmax = 27.3°, θmin = 3.3°
ω scansh = −11→10
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009)k = −29→28
Tmin = 0.974, Tmax = 0.984l = −13→13
12650 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.030P)2] where P = (Fo2 + 2Fc2)/3
4449 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.10563 (10)0.53152 (4)0.31415 (9)0.0480 (3)
O20.22203 (12)0.57809 (4)0.00532 (9)0.0593 (3)
N10.23974 (13)0.48659 (5)0.09366 (11)0.0489 (3)
N20.09544 (13)0.62319 (5)0.21564 (12)0.0482 (3)
C10.13539 (18)0.66314 (6)0.31558 (15)0.0487 (4)
C20.0555 (2)0.71249 (7)0.3510 (2)0.0713 (5)
H2−0.03780.72340.30690.086*
C30.1210 (3)0.74527 (7)0.4557 (2)0.0930 (7)
H30.07040.77890.48140.112*
C40.2579 (3)0.72923 (9)0.5217 (2)0.0945 (7)
H40.29720.75110.59290.113*
C50.3369 (2)0.68093 (7)0.48276 (17)0.0704 (5)
H50.43080.67040.52630.085*
C60.27635 (18)0.64807 (6)0.37867 (14)0.0473 (4)
C70.34049 (16)0.59543 (6)0.31284 (14)0.0450 (4)
C80.19045 (15)0.57223 (5)0.23417 (13)0.0410 (3)
C90.21867 (16)0.54118 (6)0.10658 (13)0.0454 (4)
C100.22059 (15)0.45194 (5)0.20565 (14)0.0416 (3)
C110.26861 (15)0.39259 (6)0.20617 (15)0.0441 (4)
C120.34693 (17)0.36818 (6)0.10200 (16)0.0568 (4)
H120.36680.39100.02960.068*
C130.39369 (19)0.31155 (7)0.1063 (2)0.0715 (5)
H130.44630.29610.03720.086*
C140.3635 (2)0.27640 (7)0.2132 (2)0.0758 (6)
H140.39620.23770.21500.091*
C150.2869 (2)0.29814 (6)0.31467 (19)0.0671 (5)
H150.26660.27410.38500.081*
C160.23744 (16)0.35707 (6)0.31460 (16)0.0498 (4)
C170.16004 (19)0.38141 (6)0.41846 (16)0.0620 (5)
H170.13720.35800.48910.074*
C180.11748 (17)0.43869 (6)0.41815 (15)0.0575 (4)
H180.06700.45420.48830.069*
C190.15037 (16)0.47384 (5)0.31146 (14)0.0438 (4)
C20−0.06197 (19)0.61855 (7)0.15824 (19)0.0748 (5)
H20A−0.12900.60460.22320.112*
H20B−0.06430.59180.08570.112*
H20C−0.09710.65620.12770.112*
C210.46191 (17)0.61472 (6)0.21791 (16)0.0620 (5)
H21A0.41640.64290.15730.093*
H21B0.49620.58150.17030.093*
H21C0.54920.63190.26670.093*
C220.4158 (2)0.55129 (6)0.40929 (17)0.0717 (5)
H22A0.50250.56910.45740.108*
H22B0.45130.51820.36180.108*
H22C0.34080.53880.46930.108*
C230.2486 (2)0.55342 (7)−0.12201 (15)0.0756 (5)
H23A0.17230.5234−0.14450.091*
H23B0.35160.5362−0.12130.091*
C240.2344 (2)0.60208 (8)−0.21924 (17)0.0930 (6)
H24A0.13140.6182−0.22040.139*
H24B0.25370.5875−0.30500.139*
H24C0.30900.6319−0.19490.139*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0591 (6)0.0358 (5)0.0510 (6)0.0043 (5)0.0201 (5)0.0047 (4)
O20.0940 (8)0.0462 (6)0.0382 (6)−0.0067 (5)0.0094 (5)0.0066 (5)
N10.0654 (8)0.0389 (7)0.0436 (8)−0.0023 (6)0.0126 (6)−0.0006 (6)
N20.0505 (8)0.0390 (7)0.0543 (8)0.0086 (6)−0.0031 (6)0.0064 (6)
C10.0630 (10)0.0305 (8)0.0545 (10)0.0000 (7)0.0183 (8)0.0056 (7)
C20.0823 (12)0.0414 (10)0.0938 (15)0.0106 (9)0.0344 (11)0.0083 (10)
C30.1261 (19)0.0404 (10)0.1195 (19)−0.0058 (12)0.0634 (16)−0.0214 (12)
C40.1252 (19)0.0703 (14)0.0921 (17)−0.0293 (13)0.0388 (15)−0.0338 (12)
C50.0889 (13)0.0617 (11)0.0616 (12)−0.0206 (10)0.0123 (10)−0.0123 (9)
C60.0604 (10)0.0366 (8)0.0458 (9)−0.0056 (7)0.0099 (8)0.0008 (7)
C70.0509 (9)0.0378 (8)0.0460 (9)0.0027 (7)0.0004 (7)0.0055 (7)
C80.0486 (9)0.0349 (7)0.0401 (9)0.0017 (7)0.0076 (7)0.0061 (6)
C90.0567 (10)0.0419 (9)0.0381 (9)−0.0045 (7)0.0063 (7)0.0043 (7)
C100.0487 (9)0.0344 (8)0.0426 (9)−0.0033 (6)0.0088 (7)0.0003 (7)
C110.0401 (8)0.0364 (8)0.0557 (10)−0.0027 (7)0.0026 (7)−0.0040 (7)
C120.0566 (10)0.0454 (9)0.0688 (12)0.0018 (8)0.0064 (9)−0.0114 (8)
C130.0694 (12)0.0547 (11)0.0904 (15)0.0075 (9)0.0040 (10)−0.0217 (10)
C140.0750 (13)0.0415 (10)0.1086 (18)0.0119 (9)−0.0133 (12)−0.0127 (11)
C150.0749 (12)0.0407 (9)0.0841 (14)−0.0019 (8)−0.0092 (11)0.0060 (9)
C160.0506 (10)0.0356 (8)0.0629 (11)−0.0028 (7)0.0004 (8)0.0021 (8)
C170.0761 (12)0.0466 (10)0.0646 (12)−0.0051 (8)0.0152 (9)0.0186 (8)
C180.0722 (11)0.0476 (9)0.0555 (11)0.0025 (8)0.0262 (8)0.0082 (8)
C190.0493 (9)0.0328 (8)0.0503 (10)0.0007 (7)0.0117 (7)0.0039 (7)
C200.0609 (12)0.0686 (11)0.0928 (14)0.0078 (9)−0.0135 (10)0.0146 (10)
C210.0533 (10)0.0603 (10)0.0734 (12)−0.0029 (8)0.0120 (9)−0.0050 (8)
C220.0805 (12)0.0560 (10)0.0748 (13)0.0045 (9)−0.0259 (10)0.0107 (9)
C230.1160 (15)0.0711 (11)0.0406 (11)−0.0154 (10)0.0133 (10)−0.0001 (9)
C240.1305 (17)0.1011 (15)0.0468 (12)−0.0337 (13)0.0011 (11)0.0163 (10)

Geometric parameters (Å, °)

O1—C191.3780 (14)C12—C131.3591 (19)
O1—C81.4640 (15)C12—H120.9300
O2—C91.3371 (15)C13—C141.393 (2)
O2—C231.4478 (18)C13—H130.9300
N1—C91.2724 (16)C14—C151.356 (2)
N1—C101.4095 (16)C14—H140.9300
N2—C11.3977 (18)C15—C161.417 (2)
N2—C81.4320 (16)C15—H150.9300
N2—C201.4471 (18)C16—C171.402 (2)
C1—C61.3823 (19)C17—C181.3631 (19)
C1—C21.383 (2)C17—H170.9300
C2—C31.397 (3)C18—C191.3971 (19)
C2—H20.9300C18—H180.9300
C3—C41.372 (3)C20—H20A0.9600
C3—H30.9300C20—H20B0.9600
C4—C51.371 (3)C20—H20C0.9600
C4—H40.9300C21—H21A0.9600
C5—C61.378 (2)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C71.5025 (19)C22—H22A0.9600
C7—C221.5278 (18)C22—H22B0.9600
C7—C211.5332 (19)C22—H22C0.9600
C7—C81.5713 (18)C23—C241.493 (2)
C8—C91.5163 (18)C23—H23A0.9700
C10—C191.3649 (19)C23—H23B0.9700
C10—C111.4218 (17)C24—H24A0.9600
C11—C121.409 (2)C24—H24B0.9600
C11—C161.4125 (19)C24—H24C0.9600
C19—O1—C8116.81 (10)C14—C13—H13119.7
C9—O2—C23117.27 (11)C15—C14—C13120.53 (16)
C9—N1—C10116.47 (12)C15—C14—H14119.7
C1—N2—C8108.97 (11)C13—C14—H14119.7
C1—N2—C20121.73 (13)C14—C15—C16120.68 (17)
C8—N2—C20120.44 (11)C14—C15—H15119.7
C6—C1—C2121.30 (15)C16—C15—H15119.7
C6—C1—N2110.22 (12)C17—C16—C11118.98 (13)
C2—C1—N2128.46 (15)C17—C16—C15122.42 (15)
C1—C2—C3117.11 (17)C11—C16—C15118.60 (15)
C1—C2—H2121.4C18—C17—C16121.46 (14)
C3—C2—H2121.4C18—C17—H17119.3
C4—C3—C2121.72 (18)C16—C17—H17119.3
C4—C3—H3119.1C17—C18—C19119.34 (14)
C2—C3—H3119.1C17—C18—H18120.3
C5—C4—C3120.08 (19)C19—C18—H18120.3
C5—C4—H4120.0C10—C19—O1120.43 (12)
C3—C4—H4120.0C10—C19—C18121.66 (12)
C4—C5—C6119.59 (18)O1—C19—C18117.88 (13)
C4—C5—H5120.2N2—C20—H20A109.5
C6—C5—H5120.2N2—C20—H20B109.5
C5—C6—C1120.14 (15)H20A—C20—H20B109.5
C5—C6—C7130.64 (15)N2—C20—H20C109.5
C1—C6—C7109.21 (12)H20A—C20—H20C109.5
C6—C7—C22113.40 (13)H20B—C20—H20C109.5
C6—C7—C21109.53 (11)C7—C21—H21A109.5
C22—C7—C21108.61 (12)C7—C21—H21B109.5
C6—C7—C8100.77 (11)H21A—C21—H21B109.5
C22—C7—C8114.07 (11)C7—C21—H21C109.5
C21—C7—C8110.25 (12)H21A—C21—H21C109.5
N2—C8—O1107.05 (10)H21B—C21—H21C109.5
N2—C8—C9112.96 (11)C7—C22—H22A109.5
O1—C8—C9106.91 (10)C7—C22—H22B109.5
N2—C8—C7103.68 (10)H22A—C22—H22B109.5
O1—C8—C7110.71 (10)C7—C22—H22C109.5
C9—C8—C7115.30 (11)H22A—C22—H22C109.5
N1—C9—O2122.16 (13)H22B—C22—H22C109.5
N1—C9—C8125.60 (12)O2—C23—C24107.05 (14)
O2—C9—C8112.23 (11)O2—C23—H23A110.3
C19—C10—N1120.89 (12)C24—C23—H23A110.3
C19—C10—C11119.45 (13)O2—C23—H23B110.3
N1—C10—C11119.60 (13)C24—C23—H23B110.3
C12—C11—C16118.97 (13)H23A—C23—H23B108.6
C12—C11—C10121.99 (14)C23—C24—H24A109.5
C16—C11—C10119.04 (13)C23—C24—H24B109.5
C13—C12—C11120.65 (16)H24A—C24—H24B109.5
C13—C12—H12119.7C23—C24—H24C109.5
C11—C12—H12119.7H24A—C24—H24C109.5
C12—C13—C14120.55 (17)H24B—C24—H24C109.5
C12—C13—H13119.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.603.5014 (18)164

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2559).

References

  • Chibisov, A. K. & Gardner, H. (1999). J. Phys. Chem. A, 103, 5211–5216.
  • Khairutdinov, R. F., Giertz, K., Hurst, J. K., Voloshina, E. N., Voloshin, N. A. & Minkin, V. I. (1998). J. Am. Chem. Soc.49, 12707–12713.
  • Lin, J., Chai, W., Song, L., Qin, L. & Shu, K. (2009). Acta Cryst. C65, o621–o623. [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
  • Pozzo, J. L., Samat, A., Guglielmetti, R. & Keukeleireb, D. D. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1327–1332.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tan, T.-F., Chen, P.-L., Huang, H.-M. & Meng, J.-B. (2005). Tetrahedron, 61, 8192–8198.
  • Uznanski, P., Amiens, C., Donnadieu, B., Coppel, Y. & Chaudret, B. (2001). New J. Chem.25, 1486–1494.
  • Zhang, C.-R., Zhang, Z.-B., Fan, M.-G. & Yan, W.-P. (2008). Dyes Pigm.76, 832–835.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography