PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1802.
Published online 2010 June 26. doi:  10.1107/S1600536810020441
PMCID: PMC3006907

4,5-Diaza-9H-fluoren-9-imine

Abstract

In the title compound, C11H7N3, the diaza­fluorene rings are almost coplanar with an r.m.s. deviation of 0.0160 Å. In the crystal structure, C—H(...)N hydrogen bonds link mol­ecules into sheets parallel to the ab plane. Mol­ecules are also stacked regularly along the c axis by a variety of π–π inter­actions with centroid–centroid distances in the range 3.527 (2)–3.908 (2) Å.

Related literature

For the use of the title compound in synthesizing complexes with inter­esting photochemical properties and for the synthesis, see: Wang & Rillema (1997 [triangle]). For reference bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1802-scheme1.jpg

Experimental

Crystal data

  • C11H7N3
  • M r = 181.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1802-efi1.jpg
  • a = 10.008 (2) Å
  • b = 12.407 (3) Å
  • c = 6.8140 (14) Å
  • β = 99.74 (3)°
  • V = 833.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.973, T max = 0.991
  • 1638 measured reflections
  • 1503 independent reflections
  • 1010 reflections with I > 2σ(I)
  • R int = 0.022
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.194
  • S = 1.06
  • 1503 reflections
  • 127 parameters
  • 40 restraints
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020441/sj5007sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020441/sj5007Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

supplementary crystallographic information

Comment

4,5-diazafluorene-9-imine is one of the important ligands, being utilized to synthesize complexes with interesting photochemical properties (Wang & Rillema, 1997). Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1, and the selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The diazafluorene rings are almost coplanar with an rms deviation 0.0160 Å.

In the crystal structure C—H···N hydrogen bonds link molecules into sheets parallel to the ab plane, Table 1. An extensive system of π–π contacts stacks molecules in an obverse fashion down the c axis, Fig. 2, with Cg1···Cg1 = 3.876 (2) /%A, Cg2···Cg2 = 3.572 (2) /%A, Cg(3)···Cg3 = 3.908 (2) and Cg1···Cg2 3.776 (2) Å and 3.863 (2) Å. Symmetry operations x, 1/2-y, 1/2+z, and x, 1/2-y, -1/2+z; Cg1, Cg2 and Cg3 are the centroids of the C2,C3,C5,C7,C8; N2,C1,C2,C3,C4,C5 and N3,C6,C7,C10,C11 rings, respectively.

Experimental

The title compound was synthesized by a method reported in literature (Wang & Rillema, 1997). Crystals were obtained by dissolving the compound (2.0 g, 11.0 mmol) in ethyl acetate(50 ml), and evaporating the solvent slowly at room temperature for about 5 d.

Refinement

H atoms were positioned geometrically, with N—H = 0.75 and C—H = 0.93Å for aromatic C–H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/N), where x = 1.2 for aromatic H and x = 1.5 for the N–H.

Figures

Fig. 1.
A drawing of the title molecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram for (I). Hydrogen bonds are drawn as dashed lines.

Crystal data

C11H7N3F(000) = 376
Mr = 181.20Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.008 (2) Åθ = 10–13°
b = 12.407 (3) ŵ = 0.09 mm1
c = 6.8140 (14) ÅT = 293 K
β = 99.74 (3)°Block, colourless
V = 833.9 (3) Å30.30 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1010 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
graphiteθmax = 25.3°, θmin = 2.1°
ω/2θ scansh = −11→11
Absorption correction: ψ scan (North et al., 1968)k = 0→14
Tmin = 0.973, Tmax = 0.991l = 0→8
1638 measured reflections3 standard reflections every 200 reflections
1503 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0948P)2 + 0.5792P] where P = (Fo2 + 2Fc2)/3
1503 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.28 e Å3
40 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.8062 (3)0.5097 (2)0.3404 (5)0.0530 (8)
H10.74910.54970.32460.079*
N20.7922 (3)0.1271 (2)0.3022 (4)0.0488 (8)
N30.5012 (3)0.2137 (2)0.2363 (4)0.0455 (7)
C10.9253 (4)0.1124 (3)0.3376 (5)0.0540 (10)
H1A0.95670.04180.33910.065*
C20.7547 (3)0.2304 (2)0.3049 (5)0.0410 (8)
C30.8433 (3)0.3171 (2)0.3340 (4)0.0389 (8)
C40.9804 (4)0.2998 (3)0.3749 (5)0.0508 (9)
H4A1.04250.35590.40270.061*
C51.0202 (4)0.1925 (3)0.3720 (6)0.0545 (10)
H5A1.11190.17510.39350.065*
C60.6122 (3)0.2709 (2)0.2711 (4)0.0360 (7)
C70.6173 (3)0.3850 (2)0.2811 (5)0.0422 (8)
C80.7604 (3)0.4188 (2)0.3239 (5)0.0441 (8)
C90.3856 (3)0.2703 (3)0.2096 (5)0.0496 (9)
H9A0.30440.23240.18370.060*
C100.3791 (3)0.3820 (3)0.2181 (6)0.0546 (10)
H10A0.29550.41670.20020.066*
C110.4973 (3)0.4412 (3)0.2531 (5)0.0505 (9)
H11A0.49590.51610.25760.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0453 (17)0.0273 (15)0.083 (2)−0.0112 (13)0.0014 (15)0.0041 (14)
N20.0498 (18)0.0401 (16)0.0546 (17)0.0120 (14)0.0033 (13)0.0013 (13)
N30.0466 (17)0.0278 (14)0.0614 (17)−0.0041 (12)0.0071 (13)−0.0015 (12)
C10.058 (2)0.041 (2)0.063 (2)0.0158 (18)0.0088 (17)0.0032 (17)
C20.0445 (18)0.0317 (17)0.0454 (18)0.0036 (14)0.0032 (14)−0.0001 (14)
C30.0430 (18)0.0370 (17)0.0380 (15)−0.0060 (14)0.0105 (13)0.0004 (13)
C40.045 (2)0.046 (2)0.059 (2)−0.0079 (16)0.0011 (16)0.0065 (16)
C50.0399 (19)0.065 (3)0.058 (2)0.0084 (18)0.0070 (15)0.0018 (18)
C60.0387 (16)0.0285 (16)0.0390 (16)−0.0005 (13)0.0011 (12)−0.0013 (12)
C70.0478 (19)0.0246 (16)0.0516 (18)−0.0031 (14)0.0013 (14)0.0001 (13)
C80.0497 (19)0.0282 (16)0.0536 (19)−0.0097 (15)0.0062 (15)−0.0024 (14)
C90.0339 (18)0.045 (2)0.068 (2)−0.0037 (15)0.0030 (15)−0.0008 (17)
C100.045 (2)0.040 (2)0.079 (3)0.0097 (17)0.0094 (17)−0.0004 (18)
C110.056 (2)0.0250 (17)0.069 (2)0.0054 (16)0.0049 (17)0.0010 (16)

Geometric parameters (Å, °)

N1—C81.216 (4)C4—C51.391 (5)
N1—H10.7500C4—H4A0.9300
N2—C11.325 (4)C5—H5A0.9300
N2—C21.336 (4)C6—C71.417 (4)
N3—C61.305 (4)C7—C111.373 (4)
N3—C91.340 (4)C7—C81.473 (4)
C1—C51.367 (5)C9—C101.389 (5)
C1—H1A0.9300C9—H9A0.9300
C2—C31.386 (4)C10—C111.379 (5)
C2—C61.493 (4)C10—H10A0.9300
C3—C41.371 (5)C11—H11A0.9300
C3—C81.505 (4)
C8—N1—H1109.5N3—C6—C7125.1 (3)
C1—N2—C2113.9 (3)N3—C6—C2127.3 (3)
C6—N3—C9115.4 (3)C7—C6—C2107.6 (3)
N2—C1—C5125.4 (3)C11—C7—C6118.5 (3)
N2—C1—H1A117.3C11—C7—C8132.9 (3)
C5—C1—H1A117.3C6—C7—C8108.6 (3)
N2—C2—C3124.9 (3)N1—C8—C7128.4 (3)
N2—C2—C6125.7 (3)N1—C8—C3125.3 (3)
C3—C2—C6109.4 (3)C7—C8—C3106.3 (2)
C4—C3—C2120.1 (3)N3—C9—C10124.3 (3)
C4—C3—C8131.7 (3)N3—C9—H9A117.9
C2—C3—C8108.0 (3)C10—C9—H9A117.9
C3—C4—C5115.2 (3)C11—C10—C9119.5 (3)
C3—C4—H4A122.4C11—C10—H10A120.2
C5—C4—H4A122.4C9—C10—H10A120.2
C1—C5—C4120.4 (3)C7—C11—C10117.3 (3)
C1—C5—H5A119.8C7—C11—H11A121.3
C4—C5—H5A119.8C10—C11—H11A121.3
C2—N2—C1—C5−0.8 (5)N3—C6—C7—C110.2 (5)
C1—N2—C2—C32.3 (5)C2—C6—C7—C11179.6 (3)
C1—N2—C2—C6−179.7 (3)N3—C6—C7—C8179.7 (3)
N2—C2—C3—C4−4.0 (5)C2—C6—C7—C8−0.9 (4)
C6—C2—C3—C4177.8 (3)C11—C7—C8—N1−1.9 (6)
N2—C2—C3—C8179.3 (3)C6—C7—C8—N1178.7 (4)
C6—C2—C3—C81.1 (3)C11—C7—C8—C3−179.1 (3)
C2—C3—C4—C53.7 (5)C6—C7—C8—C31.5 (4)
C8—C3—C4—C5179.5 (3)C4—C3—C8—N15.0 (6)
N2—C1—C5—C41.0 (6)C2—C3—C8—N1−178.9 (3)
C3—C4—C5—C1−2.4 (5)C4—C3—C8—C7−177.8 (3)
C9—N3—C6—C7−0.2 (5)C2—C3—C8—C7−1.6 (3)
C9—N3—C6—C2−179.5 (3)C6—N3—C9—C10−0.4 (5)
N2—C2—C6—N31.0 (5)N3—C9—C10—C111.0 (6)
C3—C2—C6—N3179.3 (3)C6—C7—C11—C100.4 (5)
N2—C2—C6—C7−178.4 (3)C8—C7—C11—C10−179.0 (3)
C3—C2—C6—C7−0.1 (3)C9—C10—C11—C7−0.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11A···N3i0.932.453.382 (4)178
C4—H4A···N1ii0.932.693.536 (4)152

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5007).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377–12390.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography