PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1711–o1712.
Published online 2010 June 18. doi:  10.1107/S160053681002297X
PMCID: PMC3006901

Mesit­yl(2,4,6-trimeth­oxy­phen­yl)borinic acid

Abstract

In the title mol­ecule, C18H23BO4, the dihedral angle between the least-squares planes of the aromatic rings is 84.88 (3)°. The B atom deviates by 0.202 (1) Å from the least-squares plane of the mesityl ring. All of the meth­oxy groups are approximately coplanar with the 2,4,6-trimeth­oxy­phenyl ring, whereas the BOH group is twisted with respect to it by 19.5°. The borinic OH group is engaged in an intra­molecular O—H(...)O hydrogen bond with one of ortho-meth­oxy groups. The mol­ecular structure is stabilized by weak C—H(...)O contacts. In the crystal, mol­ecules are linked by weak C—H(...)O and C—H(...)π inter­actions, generating a three-dimensional network.

Related literature

For background to ortho-alk­oxy­aryl­boronic acids, see: (Dąbrowski et al. 2008 [triangle]; Luliński (2008 [triangle]). For related structures, see: Beringhelli et al. (2003 [triangle]); Cornet et al. (2003 [triangle]); Entwistle et al. (2007 [triangle]); Kuhlmann et al. (2008 [triangle]); Weese et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1711-scheme1.jpg

Experimental

Crystal data

  • C18H23BO4
  • M r = 314.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1711-efi1.jpg
  • a = 6.7775 (2) Å
  • b = 13.0005 (4) Å
  • c = 19.6234 (7) Å
  • β = 98.895 (3)°
  • V = 1708.24 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.61 × 0.40 × 0.17 mm

Data collection

  • Oxford Diffraction KM-4-CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005 [triangle]) T min = 0.93, T max = 0.99
  • 28861 measured reflections
  • 4194 independent reflections
  • 3326 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.119
  • S = 1.15
  • 4194 reflections
  • 216 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002297X/pv2296sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002297X/pv2296Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of University of Warsaw. This work was supported by the Aldrich Chemical Co. through donation of chemicals and equipment, and by Warsaw University of Technology.

supplementary crystallographic information

Comment

The ability of arylboronic acids to form supramolecular assemblies due to intermolecular hydrogen bonding is well known. The interest in our group has focused on ortho-alkoxyarylboronic acids (Dąbrowski et al., 2008; Luliński, 2008), which are related to the title compound, (I). It represents the first structural characterization of borinic acid possessing two different aryl rings. The molecular structure of (I) reflects the significant steric hindrance around the boron atom. The angle C3—B1—C15 is 126.90 (9)°, whereas the dihedral angle between the least squares planes of aryl groups is 84.88 (3)°. The boron atom is deviated from the least squares plane of the mesityl ring by 0.202 (1) Å. The borinic OH group is engaged in an intramolecular O—H···O hydrogen-bond with one of ortho-OMe groups. All OMe groups are approximately coplanar with the 2,4,6-trimethoxyphenyl ring, whereas the BOH group is significantly twisted with respect to it. Molecules are linked by C—H···O contacts, of which there are several types (Table 1). Finally, C—H···π interactions occur between ortho-OMe groups and the mesityl ring: the distances of H10A and H14A from the ring centroid are 2.79 Å and 2.88 Å, respectively (Tab. 1). As a result, a three-dimensional network is formed.

The crystal structures of several related arylborinic acids have been reported (Beringhelli et al., 2003; Cornet et al., 2003; Entwistle et al., 2007; Kuhlmann et al., 2008; Weese et al., 1987).

Experimental

A solution of 2-bromomesitylene (4.0 g) in THF (30 ml) was treated with n-BuLi (2.0 M solution in hexanes, 10 ml) at 198 K. The mixture was stirred for 15 min followed by the addition of (2,4,6-trimethoxyphenyl)diethoxyborane (5.30 g). The mixture was quenched with HCl (2.0 M solution in diethyl ether), 10 ml). The resulting suspension was filtered. Evaporation yielded an oil which was dissolved in hexane (30 ml). The solution was washed with water (5 ml). The solvent was removed and the residue was triturated with hexane (10 ml). The product was filtered and washed with hexane (10 ml). Crystals suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of a solution of (I) (0.2 g) in toluene (5 ml).

Refinement

All hydrogen atoms were located geometrically with C—H = 0.95 and 0.98 Å for aryl and methyl type H-atoms, respectively, and O—H = 0.84 Å, and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2—1.5Ueq(C/O).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme. The intramolecular hydrogen bond is shown as a dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing diagram for (I) showing hydrogen-bonding and CH-π interactions (dashed lines).

Crystal data

C18H23BO4F(000) = 672
Mr = 314.17Dx = 1.222 Mg m3
Monoclinic, P21/cMelting point: 411 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.7775 (2) ÅCell parameters from 19650 reflections
b = 13.0005 (4) Åθ = 2.2–28.9°
c = 19.6234 (7) ŵ = 0.08 mm1
β = 98.895 (3)°T = 100 K
V = 1708.24 (10) Å3Prismatic, colourless
Z = 40.61 × 0.40 × 0.17 mm

Data collection

Oxford Diffraction KM-4-CCD diffractometer4194 independent reflections
Radiation source: fine-focus sealed tube3326 reflections with I > 2σ(I)
graphiteRint = 0.016
Detector resolution: 8.6479 pixels mm-1θmax = 28.6°, θmin = 3.0°
ω scanh = −8→9
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005)k = −17→17
Tmin = 0.93, Tmax = 0.99l = −26→26
28861 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.119w = 1/[σ2(Fo2) + (0.0686P)2 + 0.1911P] where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.004
4194 reflectionsΔρmax = 0.37 e Å3
216 parametersΔρmin = −0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0075 (17)

Special details

Experimental. Yield of (I) 3.5 g, m.p. 410 K. 1H NMR (CDCl3): 8.62 (br, 1 H), 6.75 (s, 2 H), 6.10 (s, 1 H), 3.85 (s, 3 H), 3.64 (s, 6 H), 2.28 (s, 3 H), 2.22 (s, 6 H) p.p.m.; 13C NMR: 167.8, 164.5, 137.4, 135.5, 126.3, 90.8, 55.6, 55.2, 21.7, 21.1 p.p.m.; 11B NMR: 52.0 p.p.m..
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
B10.23386 (18)1.01129 (9)0.18572 (6)0.0181 (3)
O20.16799 (14)1.03300 (6)0.24658 (4)0.0299 (2)
H20.10600.98200.25890.045*
C30.20989 (15)0.89979 (8)0.15476 (5)0.0162 (2)
C40.06690 (16)0.83008 (8)0.17250 (5)0.0172 (2)
C50.03526 (16)0.73224 (8)0.14369 (5)0.0184 (2)
H5−0.06660.68860.15560.022*
C60.15707 (17)0.70085 (8)0.09724 (5)0.0188 (2)
C70.30614 (16)0.76388 (8)0.07894 (5)0.0183 (2)
H70.39050.74040.04780.022*
C80.32920 (15)0.86210 (8)0.10719 (5)0.0159 (2)
O9−0.04374 (12)0.86431 (6)0.22104 (4)0.0250 (2)
C10−0.20118 (18)0.80035 (9)0.23876 (7)0.0263 (3)
H10A−0.26400.83430.27450.039*
H10B−0.14570.73410.25610.039*
H10C−0.30120.78910.19770.039*
O110.14219 (13)0.60596 (6)0.06627 (4)0.0269 (2)
C120.0047 (2)0.53478 (10)0.08829 (7)0.0334 (3)
H12A0.01240.46920.06430.050*
H12B−0.13110.56240.07760.050*
H12C0.03840.52390.13820.050*
C140.59619 (17)0.89498 (9)0.04312 (6)0.0228 (3)
H14A0.69170.94940.03690.034*
H14B0.51250.8802−0.00110.034*
H14C0.66890.83270.06020.034*
O130.47269 (11)0.92799 (6)0.09198 (4)0.02081 (19)
C150.31889 (16)1.10878 (8)0.15189 (5)0.0163 (2)
C160.50993 (16)1.14768 (9)0.17717 (6)0.0208 (2)
C170.57168 (17)1.24091 (9)0.15249 (6)0.0258 (3)
H170.70121.26630.16990.031*
C180.44838 (19)1.29785 (9)0.10304 (6)0.0262 (3)
C190.26153 (18)1.25828 (9)0.07763 (6)0.0236 (3)
H190.17611.29570.04340.028*
C200.19551 (16)1.16476 (8)0.10112 (5)0.0185 (2)
C210.64605 (19)1.08778 (10)0.23081 (7)0.0335 (3)
H21A0.65031.01580.21630.050*
H21B0.59571.09150.27490.050*
H21C0.78081.11710.23610.050*
C220.5173 (2)1.40011 (10)0.07841 (8)0.0414 (4)
H22A0.55471.44570.11810.062*
H22B0.40871.43160.04640.062*
H22C0.63291.38930.05490.062*
C23−0.00965 (18)1.12497 (10)0.07206 (6)0.0274 (3)
H23A−0.09081.18140.04960.041*
H23B−0.07371.09690.10950.041*
H23C0.00241.07080.03820.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
B10.0186 (6)0.0170 (6)0.0192 (6)0.0006 (4)0.0042 (4)−0.0005 (5)
O20.0484 (6)0.0182 (4)0.0279 (5)−0.0070 (4)0.0214 (4)−0.0055 (3)
C30.0181 (5)0.0140 (5)0.0167 (5)0.0005 (4)0.0034 (4)0.0006 (4)
C40.0193 (5)0.0158 (5)0.0173 (5)0.0027 (4)0.0053 (4)0.0020 (4)
C50.0206 (5)0.0146 (5)0.0204 (5)−0.0024 (4)0.0043 (4)0.0027 (4)
C60.0255 (6)0.0128 (5)0.0172 (5)−0.0004 (4)0.0009 (4)−0.0009 (4)
C70.0226 (5)0.0169 (5)0.0160 (5)0.0007 (4)0.0050 (4)−0.0011 (4)
C80.0170 (5)0.0154 (5)0.0154 (5)−0.0006 (4)0.0024 (4)0.0013 (4)
O90.0306 (5)0.0161 (4)0.0332 (5)−0.0025 (3)0.0208 (4)−0.0010 (3)
C100.0287 (6)0.0222 (6)0.0319 (6)−0.0031 (5)0.0169 (5)0.0047 (5)
O110.0402 (5)0.0156 (4)0.0275 (4)−0.0085 (3)0.0131 (4)−0.0071 (3)
C120.0508 (8)0.0184 (6)0.0341 (7)−0.0141 (5)0.0166 (6)−0.0074 (5)
C140.0221 (6)0.0228 (6)0.0262 (6)−0.0004 (4)0.0122 (5)−0.0025 (5)
O130.0226 (4)0.0178 (4)0.0248 (4)−0.0045 (3)0.0124 (3)−0.0048 (3)
C150.0184 (5)0.0136 (5)0.0179 (5)0.0002 (4)0.0061 (4)−0.0043 (4)
C160.0189 (5)0.0182 (5)0.0257 (5)0.0000 (4)0.0055 (4)−0.0069 (4)
C170.0207 (6)0.0213 (6)0.0377 (7)−0.0067 (4)0.0118 (5)−0.0114 (5)
C180.0361 (7)0.0157 (5)0.0314 (6)−0.0036 (5)0.0199 (5)−0.0033 (5)
C190.0339 (6)0.0176 (5)0.0212 (5)0.0032 (5)0.0107 (5)0.0014 (4)
C200.0219 (5)0.0171 (5)0.0176 (5)0.0008 (4)0.0066 (4)−0.0023 (4)
C210.0249 (6)0.0304 (7)0.0413 (7)0.0023 (5)−0.0073 (5)−0.0058 (6)
C220.0577 (9)0.0208 (6)0.0523 (9)−0.0102 (6)0.0295 (7)−0.0005 (6)
C230.0244 (6)0.0293 (6)0.0266 (6)−0.0003 (5)−0.0022 (5)0.0013 (5)

Geometric parameters (Å, °)

B1—O21.3675 (14)C14—H14A0.9800
B1—C31.5704 (15)C14—H14B0.9800
B1—C151.5803 (16)C14—H14C0.9800
O2—H20.8400C15—C201.4014 (15)
C3—C41.4093 (14)C15—C161.4070 (15)
C3—C81.4138 (14)C16—C171.3933 (17)
C4—O91.3742 (13)C16—C211.5051 (17)
C4—C51.3950 (15)C17—C181.3919 (18)
C5—C61.3827 (15)C17—H170.9500
C5—H50.9500C18—C191.3863 (17)
C6—O111.3719 (13)C18—C221.5128 (17)
C6—C71.3904 (15)C19—C201.3981 (16)
C7—C81.3911 (15)C19—H190.9500
C7—H70.9500C20—C231.5103 (16)
C8—O131.3633 (12)C21—H21A0.9800
O9—C101.4372 (13)C21—H21B0.9800
C10—H10A0.9800C21—H21C0.9800
C10—H10B0.9800C22—H22A0.9800
C10—H10C0.9800C22—H22B0.9800
O11—C121.4268 (14)C22—H22C0.9800
C12—H12A0.9800C23—H23A0.9800
C12—H12B0.9800C23—H23B0.9800
C12—H12C0.9800C23—H23C0.9800
C14—O131.4325 (13)
O2—B1—C3120.01 (10)H14A—C14—H14C109.5
O2—B1—C15113.00 (9)H14B—C14—H14C109.5
C3—B1—C15126.90 (9)C8—O13—C14117.95 (8)
B1—O2—H2109.5C20—C15—C16118.65 (10)
C4—C3—C8115.19 (9)C20—C15—B1119.92 (9)
C4—C3—B1122.13 (9)C16—C15—B1121.04 (10)
C8—C3—B1122.68 (9)C17—C16—C15119.98 (11)
O9—C4—C5120.66 (9)C17—C16—C21120.57 (11)
O9—C4—C3115.65 (9)C15—C16—C21119.45 (10)
C5—C4—C3123.69 (9)C18—C17—C16121.65 (11)
C6—C5—C4117.79 (10)C18—C17—H17119.2
C6—C5—H5121.1C16—C17—H17119.2
C4—C5—H5121.1C19—C18—C17118.03 (11)
O11—C6—C5123.15 (10)C19—C18—C22121.41 (12)
O11—C6—C7114.97 (10)C17—C18—C22120.56 (12)
C5—C6—C7121.87 (10)C18—C19—C20121.69 (11)
C6—C7—C8118.65 (10)C18—C19—H19119.2
C6—C7—H7120.7C20—C19—H19119.2
C8—C7—H7120.7C19—C20—C15119.98 (10)
O13—C8—C7121.98 (9)C19—C20—C23119.75 (10)
O13—C8—C3115.27 (9)C15—C20—C23120.26 (10)
C7—C8—C3122.73 (9)C16—C21—H21A109.5
C4—O9—C10119.04 (9)C16—C21—H21B109.5
O9—C10—H10A109.5H21A—C21—H21B109.5
O9—C10—H10B109.5C16—C21—H21C109.5
H10A—C10—H10B109.5H21A—C21—H21C109.5
O9—C10—H10C109.5H21B—C21—H21C109.5
H10A—C10—H10C109.5C18—C22—H22A109.5
H10B—C10—H10C109.5C18—C22—H22B109.5
C6—O11—C12117.12 (9)H22A—C22—H22B109.5
O11—C12—H12A109.5C18—C22—H22C109.5
O11—C12—H12B109.5H22A—C22—H22C109.5
H12A—C12—H12B109.5H22B—C22—H22C109.5
O11—C12—H12C109.5C20—C23—H23A109.5
H12A—C12—H12C109.5C20—C23—H23B109.5
H12B—C12—H12C109.5H23A—C23—H23B109.5
O13—C14—H14A109.5C20—C23—H23C109.5
O13—C14—H14B109.5H23A—C23—H23C109.5
H14A—C14—H14B109.5H23B—C23—H23C109.5
O13—C14—H14C109.5
O2—B1—C3—C422.19 (16)C7—C6—O11—C12174.12 (10)
C15—B1—C3—C4−154.17 (11)C7—C8—O13—C142.63 (15)
O2—B1—C3—C8−157.91 (10)C3—C8—O13—C14−178.89 (9)
C15—B1—C3—C825.73 (17)O2—B1—C15—C20−95.70 (12)
C8—C3—C4—O9177.19 (9)C3—B1—C15—C2080.87 (14)
B1—C3—C4—O9−2.90 (15)O2—B1—C15—C1677.06 (13)
C8—C3—C4—C5−2.93 (15)C3—B1—C15—C16−106.37 (13)
B1—C3—C4—C5176.97 (10)C20—C15—C16—C171.03 (15)
O9—C4—C5—C6−177.41 (10)B1—C15—C16—C17−171.82 (10)
C3—C4—C5—C62.72 (16)C20—C15—C16—C21−178.94 (10)
C4—C5—C6—O11179.07 (10)B1—C15—C16—C218.21 (16)
C4—C5—C6—C7−0.35 (16)C15—C16—C17—C180.20 (17)
O11—C6—C7—C8178.98 (9)C21—C16—C17—C18−179.83 (11)
C5—C6—C7—C8−1.55 (16)C16—C17—C18—C19−1.15 (17)
C6—C7—C8—O13179.63 (9)C16—C17—C18—C22178.50 (11)
C6—C7—C8—C31.26 (16)C17—C18—C19—C200.87 (17)
C4—C3—C8—O13−177.59 (9)C22—C18—C19—C20−178.77 (11)
B1—C3—C8—O132.50 (15)C18—C19—C20—C150.36 (16)
C4—C3—C8—C70.88 (15)C18—C19—C20—C23179.78 (10)
B1—C3—C8—C7−179.03 (10)C16—C15—C20—C19−1.30 (15)
C5—C4—O9—C10−3.75 (15)B1—C15—C20—C19171.63 (10)
C3—C4—O9—C10176.13 (10)C16—C15—C20—C23179.28 (10)
C5—C6—O11—C12−5.34 (16)B1—C15—C20—C23−7.79 (15)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O90.841.922.6262 (11)141
C21—H21A···O130.982.793.4825 (15)128
C10—H10B···O2i0.982.613.4920 (14)149
C12—H12A···O11ii0.982.793.5502 (15)135
C12—H12C···O2i0.982.843.6116 (17)136
C21—H21C···O2iii0.982.823.5746 (16)134
C21—H21A···O9iii0.982.853.6086 (15)135
C10—H10A···Cgiv0.982.793.3266 (14)115
C14—H14A···Cgv0.982.883.5988 (12)130

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y+1, −z; (iii) x+1, y, z; (iv) x−1, −y+1/2, z−1/2; (v) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2296).

References

  • Beringhelli, T., D’Alfonso, G., Donghi, D., Maggioni, D., Mercandelli, P. & Sironi, A. (2003). Organometallics, 22, 1588–1590.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Cornet, S. M., Dillon, K. B., Entwistle, C. D., Fox, M. A., Goeta, A. E., Goodwin, H. P., Marder, T. B. & Thompson, A. L. (2003). Dalton Trans. pp. 4395–4405.
  • Dąbrowski, M., Luliński, S. & Serwatowski, J. (2008). Acta Cryst. E64, o414–o415. [PMC free article] [PubMed]
  • Entwistle, C. D., Batsanov, A. S. & Marder, T. B. (2007). Acta Cryst. E63, o2639–o2641.
  • Kuhlmann, M., Baumgartner, T. & Parvez, M. (2008). Acta Cryst. E64, o1185. [PMC free article] [PubMed]
  • Luliński, S. (2008). Acta Cryst. E64, o1963. [PMC free article] [PubMed]
  • Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Weese, K. J., Bartlett, R. A., Murray, B. D., Olmstead, M. M. & Power, P. (1987). Inorg. Chem.26, 2409–2413.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography