PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1703.
Published online 2010 June 18. doi:  10.1107/S1600536810022841
PMCID: PMC3006898

2-(4-Fluoro­phen­yl)-4,5-dimethyl-1-(4-methyl­phen­yl)-1H-imidazole

Abstract

In the title mol­ecule, C18H17FN2, the imidazole ring is essentially planar [maximum deviation of 0.005 (1) Å and makes dihedral angles of 72.33 (8) and 18.71 (8)° with the methyl­phenyl and fluoro­phenyl rings, respectively. The dihedral angle between the two benzene rings is 75.05 (7)°. The crystal packing is stabilized by inter­molecular C—H(...)N hydrogen bonds.

Related literature

For the optical properties of heterocyclic imidazole derivatives, see: Santos et al. (2001 [triangle]); Huang et al. (2004 [triangle]); Chen & Shi (1998 [triangle]). For our general experimental procedure for the preparation of imidazoles, see: Jayabharathi et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1703-scheme1.jpg

Experimental

Crystal data

  • C18H17FN2
  • M r = 280.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1703-efi1.jpg
  • a = 9.8888 (2) Å
  • b = 7.6693 (1) Å
  • c = 20.1017 (3) Å
  • β = 95.915 (1)°
  • V = 1516.40 (4) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.65 mm−1
  • T = 295 K
  • 0.49 × 0.35 × 0.17 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010 [triangle]) T min = 0.748, T max = 1.000
  • 7060 measured reflections
  • 3181 independent reflections
  • 2617 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.153
  • S = 1.05
  • 3181 reflections
  • 194 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810022841/si2269sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022841/si2269Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JJ is grateful to the Department of Science and Technology (No. SR/S1/IC-07/2007) and the University Grants Commission [F. No. 36–21/2008 (SR)] for financial support of this work. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Imidazole derivatives have been used to construct highly sensitive fluorescent chemisensors for sensing and imaging of metal ions and its chelates in particular those with Ir3+ are major components for organic light emitting diodes and are promising candidates for fluorescent chemisensors for metal ions (Santos et al., (2001); Huang et al., (2004) and Chen & Shi (1998)). In this paper we report the crystal and molecular structure of the title compound, a fluorescent chemisensor synthesized in our laboratory.

In the title molecule (Scheme I, Fig. 1), C18H17FN2, the imidazole ring is essentially planar. The imidazole ring makes dihedral angles of 72.33 (8)° and 18.71 (8)° with the methylphenyl (C11–C16) and fluorophenyl (C21–C26) rings respectively. The dihedral angle between the two benzene rings is 75.05 (7)°. The crystal packing is stabilized by C12—H12···N3 (2 - x, 1 - y, -z) and C16—H16···N3 (2 - x, 2 - y, -z) intermolecular hydrogen bonds (Table 1, Fig. 2).

Experimental

The experimental procedure was used as the same as described in the recent paper (Jayabharathi et al., 2009). The pure biacetyl (1.48 g, 15 mmol) in ethanol (10 ml), p-toluidine (1.6 g, 15 mmol), ammonium acetate (7.0 g, 15 mmol) and p-fluorobenzaldehyde (1.7 g, 15 mmol) was added about 1 h by maintaining the temperature at 333 K. The reaction mixture was refluxed for 7 days and extracted with dichloromethane. The solid separated was purified by column chromatography using Hexane: Ethyl acetate as the eluent. Yield: 1.93 g (46%).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 – 0.96 Å; Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
The packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C18H17FN2F(000) = 592
Mr = 280.34Dx = 1.228 Mg m3
Monoclinic, P21/nMelting point: 391 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 9.8888 (2) ÅCell parameters from 4174 reflections
b = 7.6693 (1) Åθ = 4.5–77.3°
c = 20.1017 (3) ŵ = 0.65 mm1
β = 95.915 (1)°T = 295 K
V = 1516.40 (4) Å3Irregular-plate, colourless
Z = 40.49 × 0.35 × 0.17 mm

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer3181 independent reflections
Radiation source: Enhance (Cu) X-ray Source2617 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 10.5081 pixels mm-1θmax = 77.6°, θmin = 6.2°
ω scansh = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)k = −8→9
Tmin = 0.748, Tmax = 1.000l = −25→15
7060 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.153w = 1/[σ2(Fo2) + (0.0967P)2 + 0.1202P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3181 reflectionsΔρmax = 0.18 e Å3
194 parametersΔρmin = −0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0110 (14)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F40.50712 (11)0.79381 (18)−0.20135 (5)0.0878 (4)
N10.96763 (12)0.71295 (15)0.05522 (5)0.0523 (3)
N31.08318 (12)0.78452 (16)−0.02936 (6)0.0552 (4)
C20.96056 (14)0.75790 (17)−0.01134 (6)0.0506 (4)
C41.17256 (15)0.7577 (2)0.02668 (7)0.0579 (4)
C51.10396 (15)0.7121 (2)0.07926 (7)0.0570 (4)
C110.85905 (13)0.70419 (18)0.09791 (6)0.0508 (4)
C120.82752 (15)0.5472 (2)0.12584 (7)0.0578 (4)
C130.72685 (15)0.5424 (2)0.16936 (7)0.0615 (5)
C140.65756 (14)0.6921 (2)0.18449 (7)0.0620 (5)
C150.69119 (16)0.8470 (2)0.15546 (8)0.0662 (5)
C160.79222 (15)0.8549 (2)0.11215 (7)0.0590 (4)
C170.5499 (2)0.6850 (3)0.23290 (10)0.0871 (7)
C210.83724 (14)0.76750 (18)−0.05822 (6)0.0520 (4)
C220.71458 (16)0.6883 (2)−0.04783 (7)0.0635 (5)
C230.60336 (17)0.6964 (3)−0.09575 (8)0.0695 (5)
C240.61596 (17)0.7847 (2)−0.15407 (8)0.0656 (5)
C250.73553 (18)0.8635 (2)−0.16674 (7)0.0698 (5)
C260.84539 (16)0.8549 (2)−0.11881 (7)0.0617 (5)
C411.32237 (17)0.7824 (3)0.02535 (10)0.0767 (6)
C511.15183 (18)0.6712 (3)0.15018 (8)0.0736 (6)
H120.872860.445830.115770.0693*
H130.705680.436960.188630.0738*
H150.645390.948450.165020.0794*
H160.814190.960340.093140.0708*
H17A0.496770.790000.229080.1306*
H17B0.491740.586360.222540.1306*
H17C0.592890.674220.277750.1306*
H220.707040.62892−0.008040.0762*
H230.521780.64294−0.088450.0833*
H250.742100.92157−0.206900.0837*
H260.926600.90820−0.126860.0740*
H41A1.368310.755080.068500.1151*
H41B1.354370.70662−0.007660.1151*
H41C1.340530.901360.014340.1151*
H51A1.248370.688340.157610.1104*
H51B1.107360.746840.179140.1104*
H51C1.130640.552110.159520.1104*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F40.0716 (6)0.1229 (10)0.0657 (6)0.0028 (6)−0.0081 (4)0.0008 (6)
N10.0507 (6)0.0634 (7)0.0439 (5)0.0001 (5)0.0109 (4)0.0006 (5)
N30.0566 (7)0.0601 (7)0.0513 (6)−0.0017 (5)0.0173 (5)−0.0018 (5)
C20.0560 (7)0.0543 (7)0.0435 (6)−0.0014 (5)0.0142 (5)−0.0027 (5)
C40.0520 (7)0.0641 (8)0.0591 (8)0.0004 (6)0.0134 (6)−0.0024 (6)
C50.0529 (7)0.0664 (8)0.0525 (7)0.0029 (6)0.0089 (6)−0.0006 (6)
C110.0502 (7)0.0628 (8)0.0405 (6)−0.0017 (5)0.0104 (5)−0.0018 (5)
C120.0636 (8)0.0619 (8)0.0494 (7)0.0013 (6)0.0138 (6)0.0003 (6)
C130.0631 (8)0.0723 (9)0.0507 (7)−0.0094 (7)0.0131 (6)0.0051 (6)
C140.0499 (7)0.0895 (10)0.0478 (7)−0.0054 (7)0.0115 (5)−0.0045 (7)
C150.0618 (8)0.0740 (9)0.0652 (8)0.0081 (7)0.0184 (7)−0.0065 (7)
C160.0593 (7)0.0627 (8)0.0568 (7)0.0004 (6)0.0142 (6)0.0013 (6)
C170.0647 (10)0.1243 (16)0.0774 (11)−0.0073 (10)0.0317 (9)−0.0054 (11)
C210.0568 (7)0.0584 (7)0.0423 (6)−0.0010 (5)0.0128 (5)−0.0047 (5)
C220.0629 (8)0.0802 (10)0.0485 (7)−0.0113 (7)0.0113 (6)0.0024 (6)
C230.0582 (8)0.0922 (11)0.0589 (8)−0.0099 (8)0.0106 (6)−0.0043 (8)
C240.0615 (8)0.0833 (10)0.0510 (7)0.0061 (7)0.0016 (6)−0.0076 (7)
C250.0779 (10)0.0850 (11)0.0463 (7)−0.0046 (8)0.0060 (6)0.0056 (7)
C260.0661 (8)0.0731 (9)0.0473 (7)−0.0079 (7)0.0127 (6)0.0012 (6)
C410.0538 (9)0.0939 (12)0.0847 (11)−0.0009 (8)0.0182 (8)0.0034 (9)
C510.0647 (9)0.0993 (12)0.0561 (8)0.0042 (9)0.0029 (7)0.0074 (8)

Geometric parameters (Å, °)

F4—C241.362 (2)C23—C241.371 (2)
N1—C21.3765 (16)C24—C251.375 (2)
N1—C51.3845 (19)C25—C261.377 (2)
N1—C111.4435 (17)C12—H120.9300
N3—C21.3167 (18)C13—H130.9300
N3—C41.3738 (19)C15—H150.9300
C2—C211.4642 (19)C16—H160.9300
C4—C51.359 (2)C17—H17A0.9600
C4—C411.497 (2)C17—H17B0.9600
C5—C511.489 (2)C17—H17C0.9600
C11—C121.378 (2)C22—H220.9300
C11—C161.376 (2)C23—H230.9300
C12—C131.392 (2)C25—H250.9300
C13—C141.387 (2)C26—H260.9300
C14—C151.379 (2)C41—H41A0.9600
C14—C171.516 (2)C41—H41B0.9600
C15—C161.393 (2)C41—H41C0.9600
C21—C221.391 (2)C51—H51A0.9600
C21—C261.3998 (19)C51—H51B0.9600
C22—C231.387 (2)C51—H51C0.9600
F4···H13i2.7800C41···H51A2.9200
F4···H15ii2.6300C51···H41A2.9000
F4···H51Biii2.7100C51···H25vi3.0000
N3···C12iv3.3714 (19)H12···N3iv2.5500
N1···H222.8300H13···H17B2.5600
N3···H262.5500H13···F4i2.7800
N3···H12iv2.5500H15···H17A2.3800
N3···H16v2.6000H15···F4ii2.6300
C4···C26v3.515 (2)H16···C23.0900
C5···C26v3.439 (2)H16···N3v2.6000
C11···C223.1266 (19)H17A···H152.3800
C12···C513.333 (2)H17B···H132.5600
C12···N3iv3.3714 (19)H22···N12.8300
C16···C223.472 (2)H22···C112.5400
C16···C213.5624 (19)H22···C122.9000
C21···C163.5624 (19)H22···C163.0200
C22···C163.472 (2)H23···H41Bvii2.4800
C22···C113.1266 (19)H25···C51iii3.0000
C26···C4v3.515 (2)H26···N32.5500
C26···C5v3.439 (2)H26···C5v3.0900
C51···C123.333 (2)H41A···C512.9000
C2···H163.0900H41A···H51A2.3100
C5···H26v3.0900H41B···H23viii2.4800
C11···H51C3.0700H51A···C412.9200
C11···H51B2.8200H51A···H41A2.3100
C11···H222.5400H51B···C112.8200
C12···H51C3.0000H51B···F4vi2.7100
C12···H222.9000H51C···C113.0700
C16···H223.0200H51C···C123.0000
C2—N1—C5106.89 (11)C13—C12—H12120.00
C2—N1—C11128.55 (11)C12—C13—H13119.00
C5—N1—C11123.33 (10)C14—C13—H13119.00
C2—N3—C4106.51 (12)C14—C15—H15119.00
N1—C2—N3110.50 (12)C16—C15—H15119.00
N1—C2—C21126.42 (12)C11—C16—H16120.00
N3—C2—C21123.00 (11)C15—C16—H16121.00
N3—C4—C5110.22 (13)C14—C17—H17A109.00
N3—C4—C41121.39 (14)C14—C17—H17B109.00
C5—C4—C41128.38 (14)C14—C17—H17C109.00
N1—C5—C4105.87 (12)H17A—C17—H17B109.00
N1—C5—C51122.51 (13)H17A—C17—H17C109.00
C4—C5—C51131.61 (14)H17B—C17—H17C109.00
N1—C11—C12119.76 (12)C21—C22—H22119.00
N1—C11—C16119.15 (12)C23—C22—H22119.00
C12—C11—C16121.04 (13)C22—C23—H23121.00
C11—C12—C13119.07 (14)C24—C23—H23121.00
C12—C13—C14121.17 (14)C24—C25—H25121.00
C13—C14—C15118.31 (13)C26—C25—H25121.00
C13—C14—C17120.45 (15)C21—C26—H26119.00
C15—C14—C17121.24 (15)C25—C26—H26119.00
C14—C15—C16121.45 (14)C4—C41—H41A109.00
C11—C16—C15118.97 (14)C4—C41—H41B109.00
C2—C21—C22124.23 (12)C4—C41—H41C109.00
C2—C21—C26117.73 (13)H41A—C41—H41B109.00
C22—C21—C26117.96 (13)H41A—C41—H41C109.00
C21—C22—C23121.16 (14)H41B—C41—H41C109.00
C22—C23—C24118.74 (16)C5—C51—H51A109.00
F4—C24—C23119.15 (15)C5—C51—H51B109.00
F4—C24—C25118.75 (14)C5—C51—H51C109.00
C23—C24—C25122.10 (15)H51A—C51—H51B109.00
C24—C25—C26118.74 (14)H51A—C51—H51C109.00
C21—C26—C25121.30 (14)H51B—C51—H51C109.00
C11—C12—H12120.00
C5—N1—C2—N3−0.05 (15)C41—C4—C5—N1177.88 (17)
C5—N1—C2—C21176.96 (13)C41—C4—C5—C51−0.7 (3)
C11—N1—C2—N3167.43 (13)N1—C11—C12—C13177.03 (12)
C11—N1—C2—C21−15.6 (2)C16—C11—C12—C13−0.3 (2)
C2—N1—C5—C40.51 (16)N1—C11—C16—C15−177.49 (13)
C2—N1—C5—C51179.20 (15)C12—C11—C16—C15−0.1 (2)
C11—N1—C5—C4−167.78 (13)C11—C12—C13—C140.5 (2)
C11—N1—C5—C5110.9 (2)C12—C13—C14—C15−0.2 (2)
C2—N1—C11—C12117.62 (15)C12—C13—C14—C17−178.96 (15)
C2—N1—C11—C16−64.96 (18)C13—C14—C15—C16−0.2 (2)
C5—N1—C11—C12−76.77 (17)C17—C14—C15—C16178.50 (15)
C5—N1—C11—C16100.65 (16)C14—C15—C16—C110.4 (2)
C4—N3—C2—N1−0.43 (15)C2—C21—C22—C23−177.15 (15)
C4—N3—C2—C21−177.56 (13)C26—C21—C22—C23−0.4 (2)
C2—N3—C4—C50.77 (17)C2—C21—C26—C25177.29 (13)
C2—N3—C4—C41−178.00 (15)C22—C21—C26—C250.3 (2)
N1—C2—C21—C22−18.3 (2)C21—C22—C23—C24−0.1 (3)
N1—C2—C21—C26164.92 (13)C22—C23—C24—F4−179.80 (16)
N3—C2—C21—C22158.32 (14)C22—C23—C24—C250.7 (3)
N3—C2—C21—C26−18.4 (2)F4—C24—C25—C26179.73 (14)
N3—C4—C5—N1−0.79 (17)C23—C24—C25—C26−0.8 (2)
N3—C4—C5—C51−179.32 (17)C24—C25—C26—C210.3 (2)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) x−1/2, −y+3/2, z−1/2; (iv) −x+2, −y+1, −z; (v) −x+2, −y+2, −z; (vi) x+1/2, −y+3/2, z+1/2; (vii) x−1, y, z; (viii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···N3iv0.932.553.3714 (19)148
C16—H16···N3v0.932.603.5154 (19)167

Symmetry codes: (iv) −x+2, −y+1, −z; (v) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2269).

References

  • Chen, C. H. & Shi, J. (1998). Coord. Chem. Rev.171, 161–174.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Huang, W. S., Lin, J. T., Chien, C. H., Tao, Y. T., Sun, S. S. & Wen, Y. S. (2004). Chem. Mater.16, 2480–2488.
  • Jayabharathi, J., Thanikachalam, V. & Saravanan, K. (2009). J. Photochem. Photobiol. A, 208, 13–20.
  • Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Santos, J., Mintz, E. A., Zehnder, O., Bosshard, C., Bu, X. R. & Günter, P. (2001). Tetrahedron Lett.42, 805–808.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography