PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1690.
Published online 2010 June 18. doi:  10.1107/S1600536810022531
PMCID: PMC3006897

Methyl 1-benzyl-1H-1,2,3-triazole-4-carboxyl­ate

Abstract

In the title compound, C11H11N3O2, prepared by the [3+2] cycloaddition reaction of benzyl azide with methyl propiolate, the dihedral angle between the ring planes is 67.87 (11)°.

Related literature

For catalytic transformations of organic alkynes mediated by ruthenium complexes, see: Naota et al. (1998 [triangle]); Bruneau & Dixneuf (1999 [triangle]); Trost et al. (2001 [triangle]); Chen et al. (2009 [triangle]); Cheng et al. (2009 [triangle]). For the synthesis of triazoles, see: Padwa (1976 [triangle]). For applications of triazoles, see: Krivopalov & Shkurko (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1690-scheme1.jpg

Experimental

Crystal data

  • C11H11N3O2
  • M r = 217.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1690-efi1.jpg
  • a = 12.0551 (6) Å
  • b = 5.6285 (3) Å
  • c = 16.7578 (10) Å
  • β = 110.664 (3)°
  • V = 1063.90 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 200 K
  • 0.55 × 0.40 × 0.35 mm

Data collection

  • Nonuis KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.949, T max = 0.967
  • 7021 measured reflections
  • 1845 independent reflections
  • 1615 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.091
  • S = 1.01
  • 1845 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: COLLECT (Nonius, 1999 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022531/bh2294sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022531/bh2294Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support from the National Science Council, Taiwan (NSC 97–2113-M-133–001-MY2). We also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University) for his assistance with the X-ray structure analysis and the project of the specific research fields in the Chung Yuan Christian University, Taiwan, under grant CYCU-98-CR—CH.

supplementary crystallographic information

Comment

Catalytic transformations of organic alkynes mediated by ruthenium complexes are well known, and confirmation for the intermediacy of ruthenium(II) acetylide and vinylidene complexes has been provided (Bruneau & Dixneuf, 1999; Cheng et al., 2009; Naota et al., 1998; Trost et al., 2001). Therefore, ruthenium was a logical choice in our search for a new catalyst of click reaction (Chen et al., 2009). Organic azides are synthetically useful reagents. Amongst many reactions, perhaps the most significant are the 1,3-dipolar cycloaddition reactions with alkynes to synthesize triazoles (Padwa, 1976). Triazoles are nitrogen heteroarenes which have found a range of important applications in the pharmaceutical and agricultural industries (Krivopalov & Shkurko, 2005).

A mixture of benzyl azide and methyl propiolate (1:1.5 equiv, respectively) in toluene was refluxed for 24 h in the presence of 5% moles of {(Tp)(PPh3)2Ru(N3)}, leading to the title compound [Tp is hydridotris(pyrazolyl)borate]. Single crystals of the title compound suitable for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–ether.

In the title compound (Fig. 1), phenyl and triazole are linked together through a methylene group. Of major interest is the methylene C atom, which presents a C—CH2—N angle of 112.13 (11)°, larger than the ideal tetrahedral value of 109.47°. The N3—C4, C4—C3, C3—N1, N1—N2, and N2—N3 bond lengths are 1.3367 (17), 1.3722 (17), 1.3621 (16), 1.3092 (15) and 1.3560 (15) Å, respectively, which compare with those found for C═C, N═N and C—N bonds in related compounds.

Experimental

A mixture of benzyl azide, methyl propiolate and {(Tp)(PPh3)2Ru(N3)} in toluene was refluxed for 24 h. The solvent was removed under vacuum and the product was purified by silica gel chromatography. The unreacted alkyne and traces of side products were first eluted out with ether. The pure 1,4-disubstituted triazole product was then obtained by elution with CH2Cl2.

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).

Crystal data

C11H11N3O2F(000) = 456
Mr = 217.23Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3680 reflections
a = 12.0551 (6) Åθ = 2.6–25.0°
b = 5.6285 (3) ŵ = 0.10 mm1
c = 16.7578 (10) ÅT = 200 K
β = 110.664 (3)°Prism, colorless
V = 1063.90 (10) Å30.55 × 0.40 × 0.35 mm
Z = 4

Data collection

Nonuis KappaCCD diffractometer1845 independent reflections
Radiation source: fine-focus sealed tube1615 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 1.8°
CCD rotation images, thick slices scansh = −14→14
Absorption correction: multi-scan (SORTAV; Blessing, 1995)k = −6→6
Tmin = 0.949, Tmax = 0.967l = −19→18
7021 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0442P)2 + 0.2782P] where P = (Fo2 + 2Fc2)/3
1845 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.16 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.11251 (12)1.1370 (3)0.66802 (10)0.0462 (4)
H1A−0.11021.30690.68140.069*
H1B−0.10541.04440.71910.069*
H1C−0.18781.09910.62260.069*
C2−0.00887 (11)0.8505 (2)0.61959 (8)0.0359 (3)
C30.09145 (10)0.8061 (2)0.59130 (8)0.0344 (3)
C40.13667 (11)0.5915 (2)0.57855 (8)0.0379 (3)
H40.11020.43730.58640.045*
C50.30857 (12)0.4920 (2)0.53001 (10)0.0441 (3)
H5A0.30670.53340.47210.053*
H5B0.28200.32520.52880.053*
C60.43422 (11)0.5135 (2)0.59233 (8)0.0359 (3)
C70.48209 (14)0.3404 (3)0.65326 (10)0.0508 (4)
H70.43570.20660.65640.061*
C80.59814 (16)0.3616 (4)0.71015 (11)0.0662 (5)
H80.63060.24170.75180.079*
C90.66570 (14)0.5532 (4)0.70663 (11)0.0647 (5)
H90.74480.56690.74560.078*
C100.61865 (14)0.7251 (3)0.64659 (12)0.0630 (5)
H100.66530.85900.64420.076*
C110.50372 (12)0.7062 (3)0.58917 (10)0.0488 (4)
H110.47240.82620.54740.059*
N10.15518 (9)0.98335 (18)0.57253 (7)0.0379 (3)
N20.23722 (9)0.88701 (19)0.54855 (8)0.0404 (3)
N30.22627 (9)0.64798 (18)0.55266 (7)0.0380 (3)
O1−0.01523 (8)1.07905 (16)0.63991 (6)0.0417 (3)
O2−0.07666 (8)0.69845 (17)0.62483 (7)0.0480 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0442 (8)0.0438 (8)0.0558 (9)−0.0033 (6)0.0239 (7)−0.0050 (6)
C20.0330 (6)0.0314 (6)0.0372 (7)−0.0041 (5)0.0047 (5)0.0008 (5)
C30.0298 (6)0.0293 (6)0.0373 (7)−0.0038 (5)0.0032 (5)−0.0005 (5)
C40.0326 (6)0.0298 (6)0.0456 (8)−0.0047 (5)0.0067 (6)−0.0009 (5)
C50.0396 (7)0.0351 (7)0.0554 (8)0.0013 (6)0.0143 (6)−0.0090 (6)
C60.0361 (7)0.0332 (7)0.0416 (7)0.0016 (5)0.0177 (6)−0.0016 (5)
C70.0564 (9)0.0444 (8)0.0557 (9)0.0048 (7)0.0248 (7)0.0087 (7)
C80.0688 (11)0.0781 (13)0.0459 (9)0.0277 (10)0.0131 (8)0.0094 (8)
C90.0395 (8)0.0891 (14)0.0590 (10)0.0112 (9)0.0091 (7)−0.0207 (10)
C100.0409 (8)0.0662 (11)0.0854 (13)−0.0141 (8)0.0266 (8)−0.0157 (9)
C110.0439 (8)0.0435 (8)0.0618 (9)−0.0029 (6)0.0221 (7)0.0054 (7)
N10.0323 (5)0.0309 (6)0.0472 (7)−0.0012 (4)0.0098 (5)−0.0001 (5)
N20.0358 (6)0.0300 (6)0.0533 (7)−0.0010 (4)0.0134 (5)−0.0008 (5)
N30.0329 (5)0.0283 (5)0.0474 (7)−0.0015 (4)0.0076 (5)−0.0037 (5)
O10.0387 (5)0.0336 (5)0.0555 (6)−0.0053 (4)0.0199 (4)−0.0067 (4)
O20.0437 (5)0.0365 (5)0.0641 (7)−0.0083 (4)0.0196 (5)0.0017 (4)

Geometric parameters (Å, °)

C1—O11.4469 (16)C5—H5B0.9900
C1—H1A0.9800C6—C71.3817 (19)
C1—H1B0.9800C6—C111.3830 (19)
C1—H1C0.9800C7—C81.392 (2)
C2—O21.2076 (15)C7—H70.9500
C2—O11.3400 (15)C8—C91.365 (3)
C2—C31.4678 (19)C8—H80.9500
C3—N11.3621 (16)C9—C101.367 (3)
C3—C41.3722 (17)C9—H90.9500
C4—N31.3367 (17)C10—C111.384 (2)
C4—H40.9500C10—H100.9500
C5—N31.4713 (17)C11—H110.9500
C5—C61.5110 (18)N1—N21.3092 (15)
C5—H5A0.9900N2—N31.3560 (15)
O1—C1—H1A109.5C11—C6—C5120.62 (12)
O1—C1—H1B109.5C6—C7—C8120.16 (15)
H1A—C1—H1B109.5C6—C7—H7119.9
O1—C1—H1C109.5C8—C7—H7119.9
H1A—C1—H1C109.5C9—C8—C7120.57 (16)
H1B—C1—H1C109.5C9—C8—H8119.7
O2—C2—O1124.12 (13)C7—C8—H8119.7
O2—C2—C3123.97 (12)C8—C9—C10119.48 (15)
O1—C2—C3111.90 (10)C8—C9—H9120.3
N1—C3—C4108.74 (11)C10—C9—H9120.3
N1—C3—C2123.10 (11)C9—C10—C11120.74 (16)
C4—C3—C2128.16 (11)C9—C10—H10119.6
N3—C4—C3104.61 (11)C11—C10—H10119.6
N3—C4—H4127.7C6—C11—C10120.32 (15)
C3—C4—H4127.7C6—C11—H11119.8
N3—C5—C6112.13 (11)C10—C11—H11119.8
N3—C5—H5A109.2N2—N1—C3108.43 (10)
C6—C5—H5A109.2N1—N2—N3107.32 (10)
N3—C5—H5B109.2C4—N3—N2110.89 (11)
C6—C5—H5B109.2C4—N3—C5129.62 (11)
H5A—C5—H5B107.9N2—N3—C5119.49 (11)
C7—C6—C11118.73 (13)C2—O1—C1115.14 (10)
C7—C6—C5120.65 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2294).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruneau, C. & Dixneuf, P. H. (1999). Acc. Chem. Res.32, 311–323.
  • Chen, C.-K., Tong, H.-C., Chen Hsu, C.-Y., Lee, C.-Y., Fong, Y. H., Chuang, Y.-S., Lo, Y.-H., Lin, Y.-C. & Wang, Y. (2009). Organometallics, 28, 3358–3368.
  • Cheng, C.-J., Tong, H.-C., Fong, Y.-H., Wang, P.-Y., Kuo, Y.-L., Lo, Y.-H. & Lin, C.-H. (2009). Dalton Trans. pp. 4435–4438. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Krivopalov, V. P. & Shkurko, O. P. (2005). Russ. Chem. Rev.74, 339–379.
  • Naota, T., Takaya, H. & Murahashi, S.-I. (1998). Chem. Rev.98, 2599–2660. [PubMed]
  • Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Padwa, A. (1976). Angew. Chem. Int. Ed. Engl.15, 123–136.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Trost, B. M., Toste, F. D. & Pinkerton, A. B. (2001). Chem. Rev.101, 2067–2096. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography