PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1583.
Published online 2010 June 5. doi:  10.1107/S1600536810020532
PMCID: PMC3006896

1,5-Dimethyl-4-{[1-(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl­idene)eth­yl]amino}-2-phenyl-1H-pyrazol-3(2H)-one

Abstract

In the title compound, C23H23N5O2, an intra­molecular N—H(...)O hydrogen bond generates an S(6) ring, and the dihedral angle between the pyrazole rings is 48.42 (8)°. The dihedral angles between the pyrazole rings and their attached phenyl rings are 10.06 (8) and 47.53 (8)°.

Related literature

For related structures and background references, see: Zhang et al. (2010 [triangle]); Zhu et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1583-scheme1.jpg

Experimental

Crystal data

  • C23H23N5O2
  • M r = 401.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1583-efi1.jpg
  • a = 20.486 (4) Å
  • b = 10.209 (2) Å
  • c = 19.753 (4) Å
  • β = 102.76 (3)°
  • V = 4029.3 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 113 K
  • 0.20 × 0.18 × 0.12 mm

Data collection

  • Rigaku Saturn CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.983, T max = 0.990
  • 13299 measured reflections
  • 3553 independent reflections
  • 2858 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.105
  • S = 1.00
  • 3553 reflections
  • 280 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020532/hb5465sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020532/hb5465Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science Development Committee of Tianjin Agricultural College for partial funding (research grant No. 2007029).

supplementary crystallographic information

Comment

As part of our onging studies of pyrazole derivatives (Zhu et al., 2010), we now report the structure of the title compound, (I).

In the molecule of the title compound, (Fig.1) there is one molecule in the asymmetric unit. Atom O1, C7, C8, C11 and atom N3 form a plane, the largest deviation being 0.0132 (15) Å for atom C11. The dihedral angle between this plane and the pyrazolone ring of PMAP is 0.46 (4)°, indicating that they are essentially coplanar, as seen in Ethyl 2–{[(1Z)–(3– methyl–5–oxo–1–phenyl–4,5–dihydro–1H–pyrazol–4–ylidene) (p–tolyl)methyl]amino}–3–phenylpropanoate (1.52 (4)°; Zhang et al., 2010). The bond lengths within this part of the molecular lie between classical single–and double–bond lengths, indicating extensive conjugation. Atoms N5,N4, C14, C13,C17 and O2 are also nearly coplanar, the largest deviation being 0.0417 (15) Å for atom C14.The dihedral angle between this plane and the phenyl ring of antipyrine is 47.41 (5)°, A strong intramolecular hydrogen bond N3—H3···O1 is observed (Table 1 & Fig. 1), stabilizing to an enamine–keto form.

Experimental

A mixture of HPMAP (15m mol) and 4-antipyrine (15m mol) in ethanol (100 ml) was refluxed over a steam bath for about 4 h, then the solution was cooled down to room temperature. After one day, pale yellow blocks were obtained and dried in air. The product was recrystallized from ethanol which afforded pale yellow blocks of (I).

Refinement

The N-bound H atom was located in a difference map and freely refined. All C-bound H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for the aryl, 0.98 Å for the methyl H atoms. Uiso(H)= 1.2 Ueq(C) for aryl, 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are presented as spheres of arbitrary radius.

Crystal data

C23H23N5O2F(000) = 1696
Mr = 401.46Dx = 1.324 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5835 reflections
a = 20.486 (4) Åθ = 2.0–27.9°
b = 10.209 (2) ŵ = 0.09 mm1
c = 19.753 (4) ÅT = 113 K
β = 102.76 (3)°Block, pale yellow
V = 4029.3 (14) Å30.20 × 0.18 × 0.12 mm
Z = 8

Data collection

Rigaku Saturn CCD diffractometer3553 independent reflections
Radiation source: rotating anode2858 reflections with I > 2σ(I)
confocalRint = 0.038
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω and [var phi] scansh = −24→21
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −11→12
Tmin = 0.983, Tmax = 0.990l = −23→20
13299 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105w = 1/[σ2(Fo2) + (0.0698P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3553 reflectionsΔρmax = 0.24 e Å3
280 parametersΔρmin = −0.20 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.36779 (5)0.46740 (9)−0.06459 (5)0.0331 (3)
O20.30384 (5)0.76857 (9)0.14645 (5)0.0320 (3)
N10.48756 (6)0.27136 (11)0.04420 (6)0.0290 (3)
N20.44223 (6)0.29879 (11)−0.01884 (6)0.0258 (3)
N30.36650 (6)0.64889 (11)0.03072 (6)0.0275 (3)
N40.31259 (6)0.98296 (10)0.01180 (6)0.0265 (3)
N50.29411 (6)0.95272 (11)0.07449 (6)0.0267 (3)
C10.44049 (7)0.21464 (12)−0.07603 (7)0.0250 (3)
C20.39265 (7)0.23181 (13)−0.13788 (7)0.0302 (4)
H20.35990.2988−0.14140.036*
C30.39318 (8)0.15100 (13)−0.19403 (8)0.0340 (4)
H30.36080.1633−0.23610.041*
C40.44038 (8)0.05234 (14)−0.18963 (8)0.0334 (4)
H40.4408−0.0021−0.22850.040*
C50.48688 (8)0.03395 (13)−0.12788 (8)0.0325 (4)
H50.5188−0.0346−0.12430.039*
C60.48738 (7)0.11448 (13)−0.07107 (8)0.0284 (3)
H60.51960.1012−0.02900.034*
C70.40969 (7)0.41613 (13)−0.01570 (7)0.0252 (3)
C80.43465 (7)0.46416 (12)0.05373 (7)0.0246 (3)
C90.48298 (7)0.36845 (13)0.08621 (7)0.0265 (3)
C100.52713 (8)0.36606 (15)0.15746 (8)0.0383 (4)
H10A0.54990.28120.16550.057*
H10B0.49990.37930.19190.057*
H10C0.56050.43610.16170.057*
C110.41305 (7)0.58307 (13)0.07650 (7)0.0242 (3)
C120.43823 (8)0.63774 (13)0.14760 (7)0.0296 (4)
H12A0.43850.73360.14530.044*
H12B0.48380.60610.16630.044*
H12C0.40890.60940.17790.044*
C130.34091 (7)0.77511 (12)0.03765 (7)0.0236 (3)
C140.33636 (7)0.87041 (12)−0.01143 (7)0.0238 (3)
C150.35030 (8)0.86237 (14)−0.08178 (7)0.0302 (4)
H15A0.38410.7946−0.08240.045*
H15B0.36700.9471−0.09400.045*
H15C0.30900.8401−0.11550.045*
C160.26801 (8)1.07262 (14)−0.03498 (8)0.0340 (4)
H16A0.29311.1167−0.06530.051*
H16B0.25021.1381−0.00760.051*
H16C0.23091.0229−0.06340.051*
C170.31227 (7)0.82187 (13)0.09295 (7)0.0252 (3)
C180.29907 (7)1.05520 (13)0.12492 (7)0.0268 (3)
C190.26278 (7)1.04378 (15)0.17587 (7)0.0325 (4)
H190.23450.97030.17650.039*
C200.26814 (8)1.14062 (16)0.22600 (8)0.0412 (4)
H200.24391.13260.26160.049*
C210.30837 (9)1.24844 (17)0.22456 (9)0.0454 (5)
H210.31161.31470.25890.054*
C220.34389 (9)1.25982 (15)0.17310 (9)0.0429 (4)
H220.37121.33450.17180.052*
C230.33989 (8)1.16264 (13)0.12312 (8)0.0344 (4)
H230.36491.16980.08810.041*
H3A0.3562 (8)0.6116 (14)−0.0115 (6)0.045 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0351 (6)0.0329 (5)0.0257 (6)0.0095 (5)−0.0053 (5)−0.0022 (4)
O20.0367 (6)0.0363 (6)0.0236 (6)−0.0021 (5)0.0081 (5)0.0049 (5)
N10.0286 (7)0.0338 (7)0.0217 (7)0.0052 (5)−0.0003 (5)0.0042 (5)
N20.0265 (7)0.0284 (6)0.0198 (6)0.0039 (5)−0.0006 (5)0.0006 (5)
N30.0322 (7)0.0267 (6)0.0216 (6)0.0026 (5)0.0016 (6)−0.0033 (5)
N40.0322 (7)0.0294 (6)0.0186 (6)0.0050 (5)0.0073 (5)0.0030 (5)
N50.0322 (7)0.0296 (6)0.0198 (6)0.0045 (5)0.0092 (5)0.0016 (5)
C10.0270 (8)0.0253 (7)0.0230 (8)−0.0017 (6)0.0063 (6)0.0005 (6)
C20.0311 (9)0.0308 (7)0.0264 (8)0.0043 (6)0.0011 (7)0.0012 (6)
C30.0401 (9)0.0357 (8)0.0236 (8)0.0003 (7)0.0012 (7)−0.0004 (6)
C40.0404 (10)0.0324 (8)0.0296 (9)−0.0027 (7)0.0126 (7)−0.0045 (7)
C50.0318 (9)0.0279 (7)0.0398 (9)0.0030 (6)0.0123 (7)−0.0008 (7)
C60.0271 (8)0.0280 (7)0.0291 (8)0.0001 (6)0.0038 (6)0.0032 (6)
C70.0234 (8)0.0276 (7)0.0232 (8)0.0020 (6)0.0019 (6)0.0021 (6)
C80.0240 (8)0.0281 (7)0.0207 (8)−0.0008 (6)0.0027 (6)0.0025 (6)
C90.0261 (8)0.0310 (7)0.0223 (7)0.0017 (6)0.0049 (6)0.0035 (6)
C100.0404 (10)0.0485 (9)0.0226 (8)0.0144 (8)−0.0001 (7)0.0007 (7)
C110.0236 (8)0.0271 (7)0.0213 (7)−0.0031 (6)0.0035 (6)0.0035 (6)
C120.0313 (8)0.0320 (8)0.0233 (8)0.0014 (6)0.0015 (6)−0.0008 (6)
C130.0239 (7)0.0248 (7)0.0209 (7)−0.0005 (6)0.0023 (6)−0.0013 (6)
C140.0207 (7)0.0298 (7)0.0200 (7)0.0001 (6)0.0025 (6)−0.0027 (6)
C150.0316 (9)0.0378 (8)0.0213 (8)0.0026 (7)0.0061 (6)0.0007 (6)
C160.0387 (9)0.0323 (8)0.0308 (9)0.0100 (7)0.0073 (7)0.0076 (7)
C170.0237 (8)0.0294 (7)0.0207 (7)−0.0022 (6)0.0009 (6)0.0006 (6)
C180.0266 (8)0.0315 (7)0.0205 (7)0.0087 (6)0.0015 (6)−0.0018 (6)
C190.0276 (8)0.0443 (9)0.0244 (8)0.0095 (7)0.0030 (6)−0.0002 (7)
C200.0355 (10)0.0633 (11)0.0232 (8)0.0165 (8)0.0029 (7)−0.0056 (8)
C210.0475 (11)0.0484 (10)0.0339 (10)0.0148 (8)−0.0048 (8)−0.0161 (8)
C220.0455 (11)0.0378 (9)0.0407 (10)0.0037 (8)−0.0009 (8)−0.0095 (8)
C230.0340 (9)0.0354 (8)0.0328 (9)0.0044 (7)0.0052 (7)−0.0015 (7)

Geometric parameters (Å, °)

O1—C71.2559 (17)C9—C101.496 (2)
O2—C171.2341 (16)C10—H10A0.9800
N1—C91.3093 (18)C10—H10B0.9800
N1—N21.4073 (16)C10—H10C0.9800
N2—C71.3792 (17)C11—C121.4933 (19)
N2—C11.4133 (17)C12—H12A0.9800
N3—C111.3408 (18)C12—H12B0.9800
N3—C131.4091 (17)C12—H12C0.9800
N3—H3A0.899 (9)C13—C141.3622 (19)
N4—C141.3664 (16)C13—C171.4314 (19)
N4—N51.4068 (16)C14—C151.4814 (19)
N4—C161.4673 (18)C15—H15A0.9800
N5—C171.4128 (17)C15—H15B0.9800
N5—C181.4327 (17)C15—H15C0.9800
C1—C61.391 (2)C16—H16A0.9800
C1—C21.398 (2)C16—H16B0.9800
C2—C31.384 (2)C16—H16C0.9800
C2—H20.9500C18—C191.382 (2)
C3—C41.386 (2)C18—C231.385 (2)
C3—H30.9500C19—C201.386 (2)
C4—C51.385 (2)C19—H190.9500
C4—H40.9500C20—C211.379 (3)
C5—C61.3893 (19)C20—H200.9500
C5—H50.9500C21—C221.379 (3)
C6—H60.9500C21—H210.9500
C7—C81.4396 (19)C22—C231.389 (2)
C8—C111.4000 (19)C22—H220.9500
C8—C91.4373 (19)C23—H230.9500
C9—N1—N2106.53 (11)N3—C11—C12119.56 (12)
C7—N2—N1111.35 (10)C8—C11—C12123.93 (12)
C7—N2—C1129.57 (11)C11—C12—H12A109.5
N1—N2—C1118.78 (11)C11—C12—H12B109.5
C11—N3—C13128.11 (12)H12A—C12—H12B109.5
C11—N3—H3A113.6 (11)C11—C12—H12C109.5
C13—N3—H3A117.5 (11)H12A—C12—H12C109.5
C14—N4—N5107.23 (10)H12B—C12—H12C109.5
C14—N4—C16122.11 (12)C14—C13—N3123.54 (13)
N5—N4—C16116.12 (11)C14—C13—C17109.25 (12)
N4—N5—C17109.15 (10)N3—C13—C17127.10 (12)
N4—N5—C18117.40 (11)C13—C14—N4109.58 (12)
C17—N5—C18122.47 (11)C13—C14—C15129.12 (12)
C6—C1—C2119.56 (13)N4—C14—C15121.23 (12)
C6—C1—N2119.69 (13)C14—C15—H15A109.5
C2—C1—N2120.74 (12)C14—C15—H15B109.5
C3—C2—C1119.82 (13)H15A—C15—H15B109.5
C3—C2—H2120.1C14—C15—H15C109.5
C1—C2—H2120.1H15A—C15—H15C109.5
C2—C3—C4120.79 (14)H15B—C15—H15C109.5
C2—C3—H3119.6N4—C16—H16A109.5
C4—C3—H3119.6N4—C16—H16B109.5
C5—C4—C3119.24 (14)H16A—C16—H16B109.5
C5—C4—H4120.4N4—C16—H16C109.5
C3—C4—H4120.4H16A—C16—H16C109.5
C4—C5—C6120.81 (13)H16B—C16—H16C109.5
C4—C5—H5119.6O2—C17—N5124.01 (13)
C6—C5—H5119.6O2—C17—C13131.67 (13)
C5—C6—C1119.75 (14)N5—C17—C13104.32 (11)
C5—C6—H6120.1C19—C18—C23120.71 (13)
C1—C6—H6120.1C19—C18—N5118.54 (13)
O1—C7—N2125.62 (12)C23—C18—N5120.74 (13)
O1—C7—C8128.99 (13)C18—C19—C20119.31 (15)
N2—C7—C8105.38 (11)C18—C19—H19120.3
C11—C8—C9132.97 (13)C20—C19—H19120.3
C11—C8—C7122.03 (12)C21—C20—C19120.52 (16)
C9—C8—C7104.97 (12)C21—C20—H20119.7
N1—C9—C8111.75 (12)C19—C20—H20119.7
N1—C9—C10118.09 (12)C20—C21—C22119.82 (15)
C8—C9—C10130.15 (13)C20—C21—H21120.1
C9—C10—H10A109.5C22—C21—H21120.1
C9—C10—H10B109.5C21—C22—C23120.38 (16)
H10A—C10—H10B109.5C21—C22—H22119.8
C9—C10—H10C109.5C23—C22—H22119.8
H10A—C10—H10C109.5C18—C23—C22119.25 (15)
H10B—C10—H10C109.5C18—C23—H23120.4
N3—C11—C8116.50 (12)C22—C23—H23120.4
C9—N1—N2—C70.73 (15)C9—C8—C11—N3179.24 (14)
C9—N1—N2—C1175.01 (12)C7—C8—C11—N31.6 (2)
C14—N4—N5—C175.07 (15)C9—C8—C11—C12−1.4 (2)
C16—N4—N5—C17145.59 (12)C7—C8—C11—C12−179.06 (13)
C14—N4—N5—C18150.16 (12)C11—N3—C13—C14130.25 (16)
C16—N4—N5—C18−69.32 (15)C11—N3—C13—C17−53.9 (2)
C7—N2—C1—C6167.10 (13)N3—C13—C14—N4−177.17 (12)
N1—N2—C1—C6−5.98 (19)C17—C13—C14—N46.37 (16)
C7—N2—C1—C2−12.1 (2)N3—C13—C14—C155.8 (2)
N1—N2—C1—C2174.78 (12)C17—C13—C14—C15−170.70 (13)
C6—C1—C2—C3−1.4 (2)N5—N4—C14—C13−7.03 (15)
N2—C1—C2—C3177.88 (13)C16—N4—C14—C13−144.66 (13)
C1—C2—C3—C40.4 (2)N5—N4—C14—C15170.30 (12)
C2—C3—C4—C50.8 (2)C16—N4—C14—C1532.7 (2)
C3—C4—C5—C6−1.1 (2)N4—N5—C17—O2178.14 (12)
C4—C5—C6—C10.2 (2)C18—N5—C17—O235.2 (2)
C2—C1—C6—C51.0 (2)N4—N5—C17—C13−1.27 (14)
N2—C1—C6—C5−178.23 (12)C18—N5—C17—C13−144.24 (13)
N1—N2—C7—O1178.08 (13)C14—C13—C17—O2177.62 (14)
C1—N2—C7—O14.6 (2)N3—C13—C17—O21.3 (2)
N1—N2—C7—C8−1.39 (15)C14—C13—C17—N5−3.03 (15)
C1—N2—C7—C8−174.88 (13)N3—C13—C17—N5−179.33 (13)
O1—C7—C8—C110.3 (2)N4—N5—C18—C19159.88 (12)
N2—C7—C8—C11179.69 (12)C17—N5—C18—C19−59.97 (18)
O1—C7—C8—C9−177.98 (14)N4—N5—C18—C23−20.81 (19)
N2—C7—C8—C91.45 (15)C17—N5—C18—C23119.34 (15)
N2—N1—C9—C80.27 (16)C23—C18—C19—C20−0.7 (2)
N2—N1—C9—C10−178.89 (13)N5—C18—C19—C20178.58 (13)
C11—C8—C9—N1−179.06 (14)C18—C19—C20—C211.1 (2)
C7—C8—C9—N1−1.10 (16)C19—C20—C21—C22−0.4 (2)
C11—C8—C9—C100.0 (3)C20—C21—C22—C23−0.7 (2)
C7—C8—C9—C10177.93 (15)C19—C18—C23—C22−0.3 (2)
C13—N3—C11—C8−173.48 (13)N5—C18—C23—C22−179.56 (13)
C13—N3—C11—C127.1 (2)C21—C22—C23—C181.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.90 (1)1.85 (1)2.6459 (15)146 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5465).

References

  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273. [PMC free article] [PubMed]
  • Zhu, H., Shi, J., Wei, Z., Dai, R. & Zhang, X. (2010). Acta Cryst. E66, o1352. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography