PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m763–m764.
Published online 2010 June 9. doi:  10.1107/S1600536810020921
PMCID: PMC3006894

Bis(2-amino-3H-benzothia­zolium) bis­(7-oxabicyclo­[2.2.1]heptane-2,3-dicarboxyl­ato)cobaltate(II) hexa­hydrate

Abstract

In the crystal structure of the title salt, (C7H7N2S)2[Co(C8H8O5)2]·6H2O, the heterocyclic N atom of the 2-amino­benzothia­zole mol­ecule is protonated. The CoII atom is situated on an inversion centre and exhibits a slightly distorted octa­hedral CoO6 coordination defined by the bridging O atoms of the bicyclo­heptane unit and four carboxyl­ate O atoms of two symmetry-related and fully deprotonated ligands. The crystal packing is stabilized by N—H(...)O hydrogen bonds between the cations and anions and by O—H(...)O hydrogen bonds including the crystal water mol­ecules.

Related literature

7-Oxabicyclo­[2.2.1]heptane-2,3-dicarb­oxy­lic anhydride (nor­cantharidin) is a lower toxicity anti­cancer drug, see: Shimi et al. (1982 [triangle]). For the importance of cobalt in biological systems, see: Jiao et al. (2005 [triangle]). For the isotypic structure of the Mn analogue, see: Wang et al. (2010 [triangle]). For related cobalt complexes, see: Wang et al. (1988 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m763-scheme1.jpg

Experimental

Crystal data

  • (C7H7N2S)2[Co(C8H8O5)2]·6H2O
  • M r = 837.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m763-efi1.jpg
  • a = 6.6924 (4) Å
  • b = 10.1294 (5) Å
  • c = 13.1860 (7) Å
  • α = 90.094 (4)°
  • β = 91.112 (4)°
  • γ = 99.314 (4)°
  • V = 881.92 (8) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.69 mm−1
  • T = 296 K
  • 0.19 × 0.16 × 0.07 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan SADABS (Sheldrick, 1996 [triangle]) T min = 0.876, T max = 0.953
  • 13051 measured reflections
  • 3999 independent reflections
  • 2460 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.130
  • S = 1.03
  • 3999 reflections
  • 262 parameters
  • 10 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020921/wm2351sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020921/wm2351Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301) for financial support.

supplementary crystallographic information

Comment

7-oxabicyclo[2,2,1] heptane-2,3-dicarboxylic anhydride (norcantharidin) derived from cantharidin is a lower toxicity anticancer drug (Shimi et al., 1982). Cobalt was recognized as an essential metal element widely distributed in biological systems such as cells and body (Jiao et al., 2005). Several related cobalt complexes with the same ligand (Wang et al., 1988) and with the ligand and with imidazole (Wang et al., 2009) have been reported.

In the title complex, (C7H7N2S)+2[Co(C8H8O5)2]2-(H2O)6, the CoII ion is located on a crystallographic centre of inversion. Two bridging oxygen atoms of the bicycloheptane units and four carboxylate oxygen atoms give rise to a slightly distorted octahedral coordination environment around the CoII atom. The bond angles O2—Co1—O2i, O4—Co1—O4i and O5—Co1—O5i (i: -x+1, -y, -z.) are 180°, while the bond angles O4—Co1—O2 and O2—Co1—O4i open up slightly from 87.71 (9)° to 92.29 (9)°, resulting in a slight distortion from the ideal octahedral geometry. The crystal packing is stabilized by N—H···O hydrogen bonds between the cations and anions and by O—H···O hydrogen bonds including the crystal water molecules.

The crystal structure of (C7H7N2S)+2[Co(C8H8O5)2]2-(H2O)6 is isotypic with that of the Mn analogue (Wang et al., 2010) where slightly longer metal—oxygen bonds are observed.

Experimental

Norcantharidin, cobalt acetate and 2-aminobenzothiazole were dissolved in 15 mL distilled water. The mixture was sealed in a 25 mL Teflon-lined stainless vessel and heated at 443 K for 3 d, then cooled slowly to room temperature. Pink crystals suitable for X-ray diffraction were obtained.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97–0.98 Å and N—H = 0.86 Å and Uiso(H)=1.2Ueq(parent atom)]. The H atoms of the water molecule were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
A view of the molecular units of the title salt showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability. Symmetry code: A (-x+2, -y, -z).

Crystal data

(C7H7N2S)2[Co(C8H8O5)2]·6H2OZ = 1
Mr = 837.73F(000) = 437
Triclinic, P1Dx = 1.577 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6924 (4) ÅCell parameters from 2197 reflections
b = 10.1294 (5) Åθ = 1.5–27.6°
c = 13.1860 (7) ŵ = 0.69 mm1
α = 90.094 (4)°T = 296 K
β = 91.112 (4)°Block, pink
γ = 99.314 (4)°0.19 × 0.16 × 0.07 mm
V = 881.92 (8) Å3

Data collection

Bruker APEXII area-detector diffractometer3999 independent reflections
Radiation source: fine-focus sealed tube2460 reflections with I > 2σ(I)
graphiteRint = 0.051
ω scansθmax = 27.6°, θmin = 1.5°
Absorption correction: multi-scan SADABS (Sheldrick, 1996)h = −8→8
Tmin = 0.876, Tmax = 0.953k = −11→13
13051 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0599P)2] where P = (Fo2 + 2Fc2)/3
3999 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.47 e Å3
10 restraintsΔρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.00000.00000.0303 (2)
S10.32716 (14)0.26697 (8)0.52780 (6)0.0399 (2)
N10.2766 (4)0.0309 (2)0.60086 (19)0.0302 (6)
H1N0.277 (5)−0.031 (3)0.644 (2)0.045*
N20.3473 (4)0.1974 (3)0.7234 (2)0.0406 (7)
H2C0.33940.13940.77130.049*
H2D0.37420.28140.73750.049*
O10.7726 (3)0.1597 (2)0.25745 (15)0.0384 (6)
O1W0.1942 (5)0.5445 (3)0.4012 (2)0.0706 (8)
H1WA0.199 (7)0.563 (5)0.4621 (17)0.106*
H1WB0.085 (5)0.492 (4)0.393 (3)0.106*
O20.6869 (3)0.0130 (2)0.13153 (15)0.0376 (6)
O2W0.5190 (4)0.5231 (2)0.2784 (2)0.0546 (7)
H2WA0.478 (6)0.473 (4)0.228 (2)0.082*
H2WB0.416 (4)0.522 (4)0.313 (3)0.082*
O30.3619 (3)0.3400 (2)0.13885 (17)0.0429 (6)
O3W0.8114 (5)0.3962 (3)0.3736 (2)0.0608 (7)
H3WA0.828 (6)0.334 (3)0.334 (3)0.091*
H3WB0.723 (6)0.432 (4)0.345 (3)0.091*
O40.3648 (3)0.14697 (19)0.06047 (16)0.0369 (5)
O50.7143 (3)0.15513 (19)−0.06851 (15)0.0327 (5)
C10.9035 (5)0.1842 (3)−0.0093 (2)0.0334 (8)
H1A0.97180.1064−0.00020.040*
C21.0232 (5)0.2949 (3)−0.0715 (2)0.0396 (8)
H2A1.08980.2587−0.12740.047*
H2B1.12370.3514−0.02990.047*
C30.8570 (5)0.3722 (3)−0.1100 (2)0.0397 (8)
H3A0.87970.4637−0.08510.048*
H3B0.84830.3724−0.18350.048*
C40.6689 (5)0.2912 (3)−0.0646 (2)0.0321 (7)
H4A0.54350.3016−0.10110.039*
C50.6600 (5)0.3150 (3)0.0495 (2)0.0298 (7)
H5A0.69670.41070.06450.036*
C60.8339 (5)0.2379 (3)0.0895 (2)0.0301 (7)
H6A0.94430.30180.12010.036*
C70.7589 (5)0.1300 (3)0.1659 (2)0.0307 (7)
C80.4489 (5)0.2639 (3)0.0876 (2)0.0314 (7)
C90.2570 (5)0.1328 (4)0.3395 (2)0.0444 (9)
H9A0.27290.21300.30410.053*
C100.2146 (5)0.0118 (4)0.2888 (3)0.0497 (10)
H10A0.20110.01020.21850.060*
C110.1922 (5)−0.1068 (4)0.3421 (3)0.0466 (9)
H11A0.1645−0.18740.30670.056*
C120.2099 (5)−0.1089 (3)0.4467 (2)0.0373 (8)
H12A0.1936−0.18920.48200.045*
C130.2522 (4)0.0113 (3)0.4966 (2)0.0291 (7)
C140.2750 (5)0.1318 (3)0.4437 (2)0.0325 (7)
C150.3185 (5)0.1578 (3)0.6290 (2)0.0297 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0393 (4)0.0196 (3)0.0308 (4)0.0010 (3)−0.0019 (3)−0.0021 (2)
S10.0525 (6)0.0285 (5)0.0373 (5)0.0028 (4)−0.0009 (4)0.0063 (4)
N10.0372 (16)0.0244 (15)0.0291 (16)0.0053 (12)0.0018 (12)0.0021 (11)
N20.058 (2)0.0267 (15)0.0354 (16)0.0027 (13)−0.0010 (13)0.0014 (12)
O10.0575 (16)0.0301 (12)0.0265 (13)0.0042 (11)−0.0040 (10)0.0005 (10)
O1W0.068 (2)0.074 (2)0.0641 (19)−0.0052 (16)0.0018 (16)−0.0069 (17)
O20.0504 (15)0.0225 (12)0.0367 (13)−0.0029 (10)−0.0079 (10)0.0022 (9)
O2W0.0644 (19)0.0363 (15)0.0614 (18)0.0040 (13)−0.0083 (14)−0.0138 (13)
O30.0439 (15)0.0339 (13)0.0519 (15)0.0093 (11)0.0025 (11)−0.0134 (11)
O3W0.067 (2)0.0509 (18)0.0643 (19)0.0122 (14)−0.0146 (15)−0.0112 (14)
O40.0377 (14)0.0221 (12)0.0493 (14)−0.0002 (10)0.0026 (10)−0.0065 (10)
O50.0406 (13)0.0233 (11)0.0322 (12)−0.0005 (10)0.0010 (10)−0.0025 (9)
C10.0352 (19)0.0254 (17)0.041 (2)0.0085 (14)0.0014 (15)0.0004 (14)
C20.042 (2)0.0328 (18)0.042 (2)0.0004 (16)0.0076 (16)0.0011 (15)
C30.059 (2)0.0243 (17)0.0333 (19)−0.0023 (16)0.0036 (16)−0.0004 (14)
C40.042 (2)0.0235 (16)0.0312 (18)0.0070 (14)−0.0053 (14)0.0016 (13)
C50.040 (2)0.0162 (15)0.0319 (18)0.0022 (13)−0.0031 (14)−0.0021 (13)
C60.0338 (19)0.0221 (16)0.0325 (18)−0.0005 (14)−0.0042 (14)−0.0009 (13)
C70.0327 (19)0.0261 (17)0.0334 (19)0.0062 (14)−0.0048 (14)0.0034 (14)
C80.042 (2)0.0246 (17)0.0281 (17)0.0072 (15)−0.0037 (14)0.0006 (14)
C90.048 (2)0.053 (2)0.032 (2)0.0084 (18)0.0041 (16)0.0076 (17)
C100.047 (2)0.075 (3)0.0282 (19)0.014 (2)0.0015 (16)−0.006 (2)
C110.039 (2)0.053 (2)0.047 (2)0.0080 (18)−0.0002 (17)−0.0193 (19)
C120.037 (2)0.0364 (19)0.040 (2)0.0114 (15)0.0021 (15)−0.0044 (16)
C130.0247 (18)0.0316 (18)0.0316 (18)0.0061 (14)0.0033 (13)−0.0007 (14)
C140.0300 (18)0.0328 (18)0.0342 (19)0.0038 (14)0.0025 (14)0.0029 (14)
C150.0334 (19)0.0268 (17)0.0283 (18)0.0032 (14)0.0024 (14)−0.0019 (13)

Geometric parameters (Å, °)

Co1—O42.033 (2)C1—C21.520 (4)
Co1—O4i2.033 (2)C1—C61.521 (4)
Co1—O22.110 (2)C1—H1A0.9800
Co1—O2i2.110 (2)C2—C31.539 (5)
Co1—O5i2.160 (2)C2—H2A0.9700
Co1—O52.160 (2)C2—H2B0.9700
S1—C151.730 (3)C3—C41.521 (4)
S1—C141.747 (3)C3—H3A0.9700
N1—C151.322 (4)C3—H3B0.9700
N1—C131.392 (4)C4—C51.527 (4)
N1—H1N0.840 (17)C4—H4A0.9800
N2—C151.308 (4)C5—C81.519 (4)
N2—H2C0.8600C5—C61.585 (4)
N2—H2D0.8600C5—H5A0.9800
O1—C71.242 (3)C6—C71.519 (4)
O1W—H1WA0.823 (18)C6—H6A0.9800
O1W—H1WB0.839 (19)C9—C141.377 (4)
O2—C71.283 (3)C9—C101.380 (5)
O2W—H2WA0.852 (18)C9—H9A0.9300
O2W—H2WB0.828 (18)C10—C111.381 (5)
O3—C81.245 (4)C10—H10A0.9300
O3W—H3WA0.842 (18)C11—C121.383 (4)
O3W—H3WB0.831 (18)C11—H11A0.9300
O4—C81.274 (3)C12—C131.369 (4)
O5—C41.460 (3)C12—H12A0.9300
O5—C11.463 (4)C13—C141.395 (4)
O4—Co1—O4i180.00 (14)H3A—C3—H3B109.3
O4—Co1—O287.71 (9)O5—C4—C3102.3 (2)
O4i—Co1—O292.29 (9)O5—C4—C5101.9 (2)
O4—Co1—O2i92.29 (9)C3—C4—C5111.7 (3)
O4i—Co1—O2i87.71 (9)O5—C4—H4A113.3
O2—Co1—O2i180.00 (6)C3—C4—H4A113.3
O4—Co1—O5i92.19 (8)C5—C4—H4A113.3
O4i—Co1—O5i87.81 (8)C8—C5—C4110.4 (2)
O2—Co1—O5i90.69 (8)C8—C5—C6115.9 (2)
O2i—Co1—O5i89.31 (8)C4—C5—C6100.7 (2)
O4—Co1—O587.81 (8)C8—C5—H5A109.8
O4i—Co1—O592.19 (8)C4—C5—H5A109.8
O2—Co1—O589.31 (8)C6—C5—H5A109.8
O2i—Co1—O590.69 (8)C7—C6—C1113.9 (2)
O5i—Co1—O5180.00 (12)C7—C6—C5112.7 (2)
C15—S1—C1490.24 (14)C1—C6—C5101.1 (2)
C15—N1—C13114.3 (2)C7—C6—H6A109.6
C15—N1—H1N121 (2)C1—C6—H6A109.6
C13—N1—H1N125 (2)C5—C6—H6A109.6
C15—N2—H2C120.0O1—C7—O2124.1 (3)
C15—N2—H2D120.0O1—C7—C6118.3 (3)
H2C—N2—H2D120.0O2—C7—C6117.7 (3)
H1WA—O1W—H1WB104 (3)O3—C8—O4123.0 (3)
C7—O2—Co1117.83 (18)O3—C8—C5118.9 (3)
H2WA—O2W—H2WB104 (3)O4—C8—C5118.0 (3)
H3WA—O3W—H3WB104 (3)C14—C9—C10118.4 (3)
C8—O4—Co1127.4 (2)C14—C9—H9A120.8
C4—O5—C195.5 (2)C10—C9—H9A120.8
C4—O5—Co1117.10 (17)C9—C10—C11120.3 (3)
C1—O5—Co1111.96 (16)C9—C10—H10A119.8
O5—C1—C2101.5 (2)C11—C10—H10A119.8
O5—C1—C6102.2 (2)C10—C11—C12121.7 (3)
C2—C1—C6111.5 (3)C10—C11—H11A119.1
O5—C1—H1A113.5C12—C11—H11A119.1
C2—C1—H1A113.5C13—C12—C11117.7 (3)
C6—C1—H1A113.5C13—C12—H12A121.1
C1—C2—C3102.2 (3)C11—C12—H12A121.1
C1—C2—H2A111.3C12—C13—N1126.7 (3)
C3—C2—H2A111.3C12—C13—C14121.1 (3)
C1—C2—H2B111.3N1—C13—C14112.2 (3)
C3—C2—H2B111.3C9—C14—C13120.7 (3)
H2A—C2—H2B109.2C9—C14—S1128.9 (3)
C4—C3—C2101.5 (2)C13—C14—S1110.4 (2)
C4—C3—H3A111.5N2—C15—N1123.8 (3)
C2—C3—H3A111.5N2—C15—S1123.3 (2)
C4—C3—H3B111.5N1—C15—S1112.9 (2)
C2—C3—H3B111.5
O4—Co1—O2—C7−42.6 (2)C2—C1—C6—C572.9 (3)
O4i—Co1—O2—C7137.4 (2)C8—C5—C6—C7−3.8 (3)
O5i—Co1—O2—C7−134.8 (2)C4—C5—C6—C7−122.9 (3)
O5—Co1—O2—C745.2 (2)C8—C5—C6—C1118.2 (3)
O2—Co1—O4—C858.0 (2)C4—C5—C6—C1−0.9 (3)
O2i—Co1—O4—C8−122.0 (2)Co1—O2—C7—O1139.8 (2)
O5i—Co1—O4—C8148.6 (2)Co1—O2—C7—C6−40.9 (3)
O5—Co1—O4—C8−31.4 (2)C1—C6—C7—O1152.8 (3)
O4—Co1—O5—C4−10.50 (18)C5—C6—C7—O1−92.7 (3)
O4i—Co1—O5—C4169.50 (18)C1—C6—C7—O2−26.5 (4)
O2—Co1—O5—C4−98.23 (18)C5—C6—C7—O287.9 (3)
O2i—Co1—O5—C481.77 (18)Co1—O4—C8—O3−167.9 (2)
O4—Co1—O5—C198.29 (18)Co1—O4—C8—C516.1 (4)
O4i—Co1—O5—C1−81.71 (18)C4—C5—C8—O3−128.2 (3)
O2—Co1—O5—C110.55 (18)C6—C5—C8—O3118.2 (3)
O2i—Co1—O5—C1−169.45 (18)C4—C5—C8—O448.0 (3)
C4—O5—C1—C2−57.1 (3)C6—C5—C8—O4−65.7 (3)
Co1—O5—C1—C2−179.28 (17)C14—C9—C10—C11−0.3 (5)
C4—O5—C1—C658.2 (2)C9—C10—C11—C120.4 (5)
Co1—O5—C1—C6−64.0 (2)C10—C11—C12—C13−0.5 (5)
O5—C1—C2—C335.8 (3)C11—C12—C13—N1−179.8 (3)
C6—C1—C2—C3−72.4 (3)C11—C12—C13—C140.5 (5)
C1—C2—C3—C4−0.9 (3)C15—N1—C13—C12179.5 (3)
C1—O5—C4—C356.9 (3)C15—N1—C13—C14−0.8 (4)
Co1—O5—C4—C3175.04 (17)C10—C9—C14—C130.4 (5)
C1—O5—C4—C5−58.7 (3)C10—C9—C14—S1180.0 (3)
Co1—O5—C4—C559.4 (2)C12—C13—C14—C9−0.5 (5)
C2—C3—C4—O5−34.6 (3)N1—C13—C14—C9179.7 (3)
C2—C3—C4—C573.7 (3)C12—C13—C14—S1179.8 (2)
O5—C4—C5—C8−86.5 (3)N1—C13—C14—S10.1 (3)
C3—C4—C5—C8165.0 (3)C15—S1—C14—C9−179.2 (3)
O5—C4—C5—C636.5 (3)C15—S1—C14—C130.5 (2)
C3—C4—C5—C6−72.0 (3)C13—N1—C15—N2−179.9 (3)
O5—C1—C6—C786.2 (3)C13—N1—C15—S11.2 (3)
C2—C1—C6—C7−166.0 (3)C14—S1—C15—N2−179.9 (3)
O5—C1—C6—C5−34.9 (3)C14—S1—C15—N1−0.9 (2)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1ii0.84 (2)1.85 (2)2.675 (3)169 (3)
N2—H2C···O2ii0.862.002.851 (3)173
N2—H2D···O2Wiii0.862.012.828 (4)160
O1W—H1WA···O3Wiii0.82 (2)2.21 (2)3.030 (4)176 (4)
O1W—H1WB···O3Wiv0.84 (4)1.94 (2)2.769 (4)171 (5)
O2W—H2WA···O30.85 (2)1.85 (2)2.686 (3)167 (4)
O2W—H2WB···O1W0.83 (2)1.95 (2)2.772 (4)171 (4)
O3W—H3WA···O10.84 (2)2.01 (2)2.815 (3)160 (4)
O3W—H3WB···O2W0.83 (4)1.96 (4)2.790 (4)178 (4)

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2351).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jiao, K., Wang, Q. X., Sun, W. & Jian, F. F. (2005). J. Inorg. Biochem.99, 1369–1375. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shimi, I. R., Zaki, Z., Shoukry, S. & Medhat, A. M. (1982). Eur. J. Cancer Clin. Oncol. 18, 785-789. [PubMed]
  • Wang, Y.-J., Hu, R.-D., Lin, Q.-Y. & Cheng, J.-P. (2009). Acta Cryst. E65, m854. [PMC free article] [PubMed]
  • Wang, N., Wen, Y.-H., Lin, Q.-Y. & Feng, J. (2010). Acta Cryst. E66, m762. [PMC free article] [PubMed]
  • Wang, H.-H., Zhu, N.-J., Fu, H., Li, R. C. & Wang, K. (1988). Sci. Sin. Ser. B, 31, 20–27.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography