PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m795–m796.
Published online 2010 June 16. doi:  10.1107/S1600536810021525
PMCID: PMC3006890

Chlorido[hydridotris(pyrazol-1-yl-κN 2)borato](1H-pyrazole-κN 2)(triphenyl­phosphine-κP)ruthenium(II)

Abstract

In the title compound, [Ru(C9H10BN6)Cl(C3H4N2)(C18H15P)], the RuII atom is coordinated by an N,N′,N′′-tridentate hydrido­trispyrazolylborate (Tp) ligand, a pyrazole (HPz) mol­ecule, a chloride ion and a triphenyl­phosphine ligand, resulting in a distorted RuClPN4 octa­hedral coordination for the metal ion: the tridentate N atoms occupy one octa­hedral face and the Cl and P atoms are cis. One of the phenyl rings is disordered over two orientations in a 0.547 (10):0.453 (10) ratio, and a weak intra­molecular N—H(...)Cl hydrogen bond generates an S(5) ring.

Related literature

For general background to ruthenium coordination chemistry with pyrazole-type ligands, see: Alcock et al. (1992 [triangle]); Cheng et al. (2009 [triangle]); Deacon et al. (1998 [triangle]); Govind et al. (1996 [triangle]); Lo et al. (2004 [triangle]); Pavlik et al. (2005 [triangle]). For related structures, see: Gemel et al. (1996 [triangle]); Slugovc et al. (1998 [triangle]). Tong et al. (2008 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m795-scheme1.jpg

Experimental

Crystal data

  • [Ru(C9H10BN6)Cl(C3H4N2)(C18H15P)]
  • M r = 679.91
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m795-efi1.jpg
  • a = 17.7782 (12) Å
  • b = 10.0843 (5) Å
  • c = 18.9139 (10) Å
  • β = 116.316 (3)°
  • V = 3039.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.69 mm−1
  • T = 200 K
  • 0.11 × 0.08 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.928, T max = 0.980
  • 22639 measured reflections
  • 5292 independent reflections
  • 3470 reflections with I > 2σ(I)
  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.118
  • S = 1.02
  • 5292 reflections
  • 360 parameters
  • H-atom parameters constrained
  • Δρmax = 0.89 e Å−3
  • Δρmin = −0.88 e Å−3

Data collection: COLLECT (Nonius, 1999 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021525/hb5462sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021525/hb5462Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC 97–2113-M-133–001-MY2) and in part from the project of specific research fields in Tatung University, Taiwan (B96–C07–081). We also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University) for his assistance with the X-ray single-crystal structure analysis and the project of specific research fields in Chung Yuan Christian University, Taiwan, under grant CYCU-98-CR–CH.

supplementary crystallographic information

Comment

Pyrazoles and pyrazolate anions are attractive ligands that disclose a rich coordination chemistry (Deacon et al., 1998). Pyrazoles and substituted pyrazoles usually perform as monodentate ligands (Lo et al., 2004) and these monodentate pyrazoles may give rise to fascinating processes such as prototropic equilibrium or reversible metal-ligand binding, which are relevant to biological systems (Govind et al., 1996). On the other hand, Tp (hydridotripyrazolylborate) ligand is often compared with the Cp (Cp = η5-C5H5) ligand due to their charge and number of electrons donated in the formation of complex. The ruthenium chloride complex [Ru(Tp)Cl(PPh3)2] (Alcock et al., 1992) has been used as the precursor for the synthesis of several complexes because of its substitutionally labile phosphines and chloride (Cheng et al., 2009). TpRu complexes are of importance for stoichiometric and catalytic transformations of organic compounds (Pavlik et al., 2005).

Treatment of the complex [Ru(Tp)Cl(PPh3)2] reacts with pyrazole in toluene affording the title compound [RuCl(Tp)(PPh3)(HPz)] (Figure 1). The single crystals of the title compound suitable for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–ether. In the crystal structure of the title compound the ruthenium metal center is coordinated by four N, one P and one Cl atom within slightly distorted octahedron. The bite angle of the Tp ligand produces an average produces an average N—Ru—N angle of 86.6° only slightly distorted from 90°. The three Ru—N(Tp) bond lengths (2.067 (4), 2.097 (4), and 2.076 (4) Å) are slightly longer than the average distance of 2.038 Å in other ruthenium Tp complexes (Gemel et al. 1996; Slugovc et al. 1998). The Ru—Cl bond of 2.4374 (14) Å are similar to those found in other (pyrazole)ruthenium complexes, such as 2.4259 (14) Å in [Ru(Tp)Cl(PPh3)(PhCN)] (Tong et al. 2008) and 2.4429 (7) Å in [Ru(Tp)Cl(PPh3) (HN=CPh2)] (Tong et al. 2009). Weak N—H——Cl hydrogen bond is observed in the crystal structure.

Experimental

To a solution of [Ru(Tp)Cl(PPh3)2] (3.95 g, 4.50 mmol) in toulene (100 ml), an excess of pyrazole were added. The mixture was heated using a warm water bath for 30 min. A deep yellow color developed during this time. The reaction mixture was stirred for a further 2 h at room temperature (298 K). Then it was concentrated to approximately half of the volume and cooled to 273 K. The yellow precipitate was filtered off, washed with ethanol and ether and dried under vacuum to give the title compound. Yellow prisms of (I) were obtained by recrystallization from dichloromethane–ether.

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) and B—H = 1.0 Å and Uiso(H) = 1.2Ueq(B).

Figures

Fig. 1.
Molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).

Crystal data

[Ru(C9H10BN6)Cl(C3H4N2)(C18H15P)]Z = 4
Mr = 679.91F(000) = 1384
Monoclinic, P21/cDx = 1.486 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 17.7782 (12) ŵ = 0.69 mm1
b = 10.0843 (5) ÅT = 200 K
c = 18.9139 (10) ÅPrism, yellow
β = 116.316 (3)°0.11 × 0.08 × 0.03 mm
V = 3039.5 (3) Å3

Data collection

Nonius KappaCCD diffractometer5292 independent reflections
Radiation source: fine-focus sealed tube3470 reflections with I > 2σ(I)
graphiteRint = 0.079
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.4°
CCD rotation images, thick slices scansh = −21→21
Absorption correction: multi-scan (SORTAV; Blessing, 1995)k = −11→12
Tmin = 0.928, Tmax = 0.980l = −22→21
22639 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0431P)2 + 4.7477P] where P = (Fo2 + 2Fc2)/3
5292 reflections(Δ/σ)max = 0.001
360 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = −0.88 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.2902 (4)0.3286 (6)0.1960 (4)0.0463 (16)
H10.27380.29870.14360.056*
C20.2953 (4)0.4609 (6)0.2186 (4)0.0555 (18)
H20.28370.53700.18580.067*
C30.3205 (4)0.4581 (6)0.2979 (4)0.0474 (17)
H30.32900.53330.33090.057*
C40.5121 (3)0.0343 (6)0.4007 (4)0.0404 (15)
H40.5261−0.03940.37760.048*
C50.5677 (4)0.0987 (7)0.4686 (4)0.0539 (18)
H50.62550.07930.49970.065*
C60.5218 (4)0.1956 (6)0.4810 (4)0.0480 (17)
H60.54190.25660.52380.058*
C70.2128 (4)0.0109 (6)0.3727 (4)0.0402 (15)
H70.1830−0.06660.34680.048*
C80.2055 (4)0.0742 (7)0.4345 (4)0.0562 (19)
H80.17010.04980.45800.067*
C90.2593 (4)0.1778 (7)0.4543 (4)0.057 (2)
H90.26890.23950.49540.069*
C100.4314 (4)0.1132 (7)0.1913 (4)0.0540 (18)
H100.43110.20640.19830.065*
C110.4754 (5)0.0497 (8)0.1565 (4)0.073 (2)
H110.50960.08900.13540.087*
C120.4589 (5)−0.0808 (8)0.1592 (4)0.069 (2)
H120.4799−0.15190.14010.082*
C130.1166 (4)−0.1063 (6)0.1829 (3)0.0387 (15)
C140.1434 (4)−0.2266 (6)0.2193 (5)0.068 (2)
H140.2008−0.25070.23830.082*
C150.0875 (6)−0.3145 (8)0.2288 (5)0.097 (2)
H150.1071−0.39710.25450.116*
C160.0059 (6)−0.2816 (8)0.2013 (4)0.0853 (19)
H16−0.0322−0.34200.20690.102*
C17−0.0222 (5)−0.1622 (7)0.1657 (4)0.0608 (14)
H17−0.0796−0.13900.14740.073*
C180.0328 (4)−0.0738 (6)0.1559 (3)0.0448 (16)
H180.01260.00900.13070.054*
C190.1261 (3)0.1512 (5)0.1297 (3)0.0377 (15)
C200.1150 (3)0.2350 (5)0.1821 (4)0.0389 (15)
H200.14420.21810.23710.047*
C210.0622 (4)0.3428 (7)0.1557 (4)0.0608 (14)
H210.05360.39770.19230.073*
C220.0221 (6)0.3709 (8)0.0766 (5)0.0853 (19)
H22−0.01240.44730.05820.102*
C230.0325 (6)0.2860 (8)0.0239 (5)0.097 (2)
H230.00370.3030−0.03110.116*
C240.0842 (5)0.1779 (7)0.0509 (4)0.078 (3)
H240.09090.12060.01420.094*
C250.2000 (3)−0.0681 (5)0.0859 (3)0.0391 (15)
C260.2011 (7)−0.2090 (10)0.0842 (7)0.039 (3)*0.547 (10)
H260.1893−0.26240.11940.047*0.547 (10)
C270.2208 (7)−0.2625 (12)0.0263 (7)0.052 (4)*0.547 (10)
H270.2197−0.35610.02040.063*0.547 (10)
C280.2412 (8)−0.1881 (13)−0.0209 (9)0.048 (3)*0.547 (10)
H280.2497−0.2303−0.06170.058*0.547 (10)
C26'0.1488 (9)−0.1639 (13)0.0340 (8)0.045 (4)*0.453 (10)
H26'0.1061−0.20010.04540.054*0.453 (10)
C27'0.1535 (10)−0.2134 (15)−0.0340 (9)0.060 (5)*0.453 (10)
H27'0.1188−0.2849−0.06320.072*0.453 (10)
C28'0.2087 (10)−0.1562 (15)−0.0564 (10)0.048 (4)*0.453 (10)
H28'0.2167−0.1872−0.10000.057*0.453 (10)
C290.2503 (5)−0.0547 (7)−0.0130 (4)0.063 (2)
H290.2658−0.0021−0.04620.076*
C300.2354 (6)−0.0005 (7)0.0473 (4)0.075 (3)
H300.25110.08910.06190.090*
N10.3114 (3)0.2499 (4)0.2585 (3)0.0316 (11)
N20.3313 (3)0.3310 (4)0.3217 (3)0.0337 (11)
N30.4364 (3)0.0895 (4)0.3725 (2)0.0281 (10)
N40.4429 (3)0.1907 (4)0.4224 (3)0.0334 (11)
N50.2680 (3)0.0749 (4)0.3548 (3)0.0303 (11)
N60.2968 (3)0.1791 (4)0.4062 (3)0.0389 (12)
N70.3897 (3)0.0274 (4)0.2138 (3)0.0367 (12)
N80.4080 (3)−0.0912 (5)0.1936 (3)0.0476 (14)
H8'0.3887−0.16690.20200.057*
B10.3644 (4)0.2722 (6)0.4052 (4)0.0397 (18)
H1'0.37710.34420.44520.048*
Cl10.34907 (9)−0.18597 (13)0.31246 (9)0.0368 (4)
Ru10.32023 (3)0.04732 (4)0.27709 (3)0.02453 (15)
P10.19260 (9)0.00460 (14)0.17152 (9)0.0329 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.055 (4)0.032 (4)0.040 (4)−0.002 (3)0.010 (3)0.011 (3)
C20.067 (5)0.027 (4)0.059 (5)−0.006 (3)0.016 (4)0.020 (3)
C30.052 (4)0.020 (3)0.071 (5)−0.007 (3)0.028 (4)−0.001 (3)
C40.034 (3)0.037 (4)0.045 (4)0.003 (3)0.013 (3)0.005 (3)
C50.032 (4)0.059 (4)0.043 (4)−0.006 (3)−0.008 (3)0.014 (4)
C60.052 (4)0.047 (4)0.026 (4)−0.023 (4)0.000 (3)0.000 (3)
C70.032 (3)0.034 (3)0.052 (4)−0.001 (3)0.016 (3)0.013 (3)
C80.055 (4)0.063 (5)0.072 (5)−0.004 (4)0.047 (4)0.002 (4)
C90.078 (5)0.054 (4)0.068 (5)0.003 (4)0.058 (5)−0.004 (4)
C100.064 (5)0.061 (4)0.049 (4)−0.017 (4)0.037 (4)−0.001 (4)
C110.088 (6)0.087 (6)0.074 (6)−0.008 (5)0.063 (5)0.003 (5)
C120.078 (6)0.086 (6)0.066 (5)0.010 (5)0.053 (5)−0.008 (4)
C130.034 (3)0.033 (3)0.036 (4)−0.007 (3)0.004 (3)−0.009 (3)
C140.049 (4)0.028 (4)0.108 (7)−0.025 (3)0.017 (4)0.005 (4)
C150.128 (6)0.072 (4)0.048 (4)0.049 (4)0.001 (4)0.007 (3)
C160.123 (5)0.068 (4)0.054 (4)0.031 (4)0.030 (4)−0.003 (3)
C170.058 (3)0.076 (4)0.051 (3)0.016 (3)0.026 (3)−0.006 (3)
C180.043 (4)0.054 (4)0.036 (4)−0.006 (3)0.016 (3)−0.002 (3)
C190.038 (3)0.030 (3)0.028 (4)0.009 (3)−0.001 (3)−0.005 (3)
C200.034 (3)0.036 (3)0.032 (4)0.010 (3)0.002 (3)0.002 (3)
C210.058 (3)0.076 (4)0.051 (3)0.016 (3)0.026 (3)−0.006 (3)
C220.123 (5)0.068 (4)0.054 (4)0.031 (4)0.030 (4)−0.003 (3)
C230.128 (6)0.072 (4)0.048 (4)0.049 (4)0.001 (4)0.007 (3)
C240.101 (6)0.070 (5)0.032 (4)0.056 (5)0.002 (4)0.000 (4)
C250.030 (3)0.031 (3)0.045 (4)0.001 (3)0.007 (3)−0.013 (3)
C290.087 (5)0.061 (5)0.040 (4)−0.017 (4)0.026 (4)−0.003 (4)
C300.151 (8)0.044 (4)0.032 (4)−0.041 (5)0.043 (5)−0.017 (3)
N10.039 (3)0.017 (2)0.033 (3)−0.002 (2)0.011 (3)0.001 (2)
N20.038 (3)0.018 (3)0.043 (3)−0.005 (2)0.017 (3)−0.003 (2)
N30.026 (3)0.029 (3)0.024 (3)−0.001 (2)0.008 (2)0.000 (2)
N40.041 (3)0.033 (3)0.021 (3)−0.009 (2)0.008 (2)−0.003 (2)
N50.030 (3)0.025 (3)0.034 (3)0.002 (2)0.012 (2)0.001 (2)
N60.049 (3)0.033 (3)0.044 (3)−0.001 (2)0.029 (3)−0.005 (2)
N70.042 (3)0.035 (3)0.037 (3)0.001 (2)0.021 (3)−0.006 (2)
N80.058 (4)0.044 (3)0.052 (4)0.001 (3)0.034 (3)−0.010 (3)
B10.049 (5)0.029 (4)0.045 (5)−0.006 (3)0.025 (4)−0.008 (3)
Cl10.0399 (8)0.0218 (7)0.0420 (9)0.0043 (6)0.0120 (7)0.0027 (6)
Ru10.0258 (2)0.0193 (2)0.0246 (3)−0.0007 (2)0.00759 (19)0.0001 (2)
P10.0322 (9)0.0231 (8)0.0321 (9)0.0004 (6)0.0039 (7)−0.0036 (6)

Geometric parameters (Å, °)

C1—N11.332 (7)C20—C211.377 (8)
C1—C21.392 (8)C20—H200.9500
C1—H10.9500C21—C221.371 (9)
C2—C31.363 (9)C21—H210.9500
C2—H20.9500C22—C231.387 (10)
C3—N21.343 (7)C22—H220.9500
C3—H30.9500C23—C241.370 (9)
C4—N31.329 (6)C23—H230.9500
C4—C51.387 (8)C24—H240.9500
C4—H40.9500C25—C301.341 (8)
C5—C61.359 (9)C25—C26'1.390 (14)
C5—H50.9500C25—C261.422 (11)
C6—N41.350 (7)C25—P11.835 (6)
C6—H60.9500C26—C271.396 (14)
C7—N51.337 (6)C26—H260.9500
C7—C81.387 (8)C27—C281.334 (15)
C7—H70.9500C27—H270.9500
C8—C91.352 (9)C28—C291.355 (14)
C8—H80.9500C28—H280.9500
C9—N61.346 (7)C26'—C27'1.416 (18)
C9—H90.9500C26'—H26'0.9500
C10—N71.326 (7)C27'—C28'1.358 (19)
C10—C111.382 (9)C27'—H27'0.9500
C10—H100.9500C28'—C291.316 (16)
C11—C121.354 (9)C28'—H28'0.9500
C11—H110.9500C29—C301.392 (9)
C12—N81.332 (7)C29—H290.9500
C12—H120.9500C30—H300.9500
C13—C141.371 (8)N1—N21.359 (6)
C13—C181.384 (8)N2—B11.539 (8)
C13—P11.838 (6)N3—N41.361 (6)
C14—C151.402 (11)N4—B11.524 (8)
C14—H140.9500N5—N61.367 (6)
C15—C161.347 (11)N6—B11.531 (8)
C15—H150.9500N7—N81.339 (6)
C16—C171.362 (9)N8—H8'0.8800
C16—H160.9500B1—H1'1.0000
C17—C181.394 (8)Ru1—N12.067 (4)
C17—H170.9500Ru1—N32.097 (4)
C18—H180.9500Ru1—N52.076 (4)
C19—C241.365 (8)Ru1—N72.076 (4)
C19—C201.382 (7)Ru1—P12.3031 (15)
C19—P11.839 (5)Ru1—Cl12.4374 (14)
N1—C1—C2110.2 (6)C27—C26—C25114.5 (9)
N1—C1—H1124.9C27—C26—H26122.8
C2—C1—H1124.9C25—C26—H26122.8
C3—C2—C1105.2 (5)C28—C27—C26123.0 (12)
C3—C2—H2127.4C28—C27—H27118.5
C1—C2—H2127.4C26—C27—H27118.5
N2—C3—C2108.5 (5)C27—C28—C29122.6 (12)
N2—C3—H3125.8C27—C28—H28118.7
C2—C3—H3125.8C29—C28—H28118.7
N3—C4—C5110.8 (6)C25—C26'—C27'127.1 (12)
N3—C4—H4124.6C25—C26'—H26'116.5
C5—C4—H4124.6C27'—C26'—H26'116.5
C6—C5—C4105.1 (6)C28'—C27'—C26'118.4 (15)
C6—C5—H5127.5C28'—C27'—H27'120.8
C4—C5—H5127.5C26'—C27'—H27'120.8
N4—C6—C5108.5 (5)C29—C28'—C27'114.9 (13)
N4—C6—H6125.8C29—C28'—H28'122.6
C5—C6—H6125.8C27'—C28'—H28'122.6
N5—C7—C8110.1 (5)C28'—C29—C2832.0 (7)
N5—C7—H7124.9C28'—C29—C30123.9 (9)
C8—C7—H7124.9C28—C29—C30115.0 (8)
C9—C8—C7105.7 (5)C28'—C29—H29105.7
C9—C8—H8127.1C28—C29—H29122.5
C7—C8—H8127.1C30—C29—H29122.5
N6—C9—C8108.8 (6)C25—C30—C29123.5 (6)
N6—C9—H9125.6C25—C30—H30118.2
C8—C9—H9125.6C29—C30—H30118.2
N7—C10—C11111.4 (6)C1—N1—N2106.4 (4)
N7—C10—H10124.3C1—N1—Ru1135.2 (4)
C11—C10—H10124.3N2—N1—Ru1118.4 (3)
C12—C11—C10104.8 (6)C3—N2—N1109.7 (5)
C12—C11—H11127.6C3—N2—B1130.1 (5)
C10—C11—H11127.6N1—N2—B1120.1 (4)
N8—C12—C11107.4 (6)C4—N3—N4106.0 (5)
N8—C12—H12126.3C4—N3—Ru1134.1 (4)
C11—C12—H12126.3N4—N3—Ru1119.8 (3)
C14—C13—C18118.2 (6)C6—N4—N3109.6 (5)
C14—C13—P1119.2 (5)C6—N4—B1132.5 (5)
C18—C13—P1122.7 (5)N3—N4—B1117.9 (5)
C13—C14—C15121.0 (7)C7—N5—N6106.1 (4)
C13—C14—H14119.5C7—N5—Ru1136.3 (4)
C15—C14—H14119.5N6—N5—Ru1117.5 (3)
C16—C15—C14119.9 (8)C9—N6—N5109.3 (5)
C16—C15—H15120.0C9—N6—B1129.9 (5)
C14—C15—H15120.0N5—N6—B1120.7 (4)
C15—C16—C17120.3 (9)C10—N7—N8104.5 (5)
C15—C16—H16119.9C10—N7—Ru1133.0 (4)
C17—C16—H16119.9N8—N7—Ru1122.2 (4)
C16—C17—C18120.4 (7)C12—N8—N7111.9 (5)
C16—C17—H17119.8C12—N8—H8'124.0
C18—C17—H17119.8N7—N8—H8'124.0
C13—C18—C17120.2 (6)N4—B1—N6108.4 (5)
C13—C18—H18119.9N4—B1—N2108.9 (5)
C17—C18—H18119.9N6—B1—N2107.7 (5)
C24—C19—C20118.7 (5)N4—B1—H1'110.6
C24—C19—P1124.3 (5)N6—B1—H1'110.6
C20—C19—P1116.9 (4)N2—B1—H1'110.6
C21—C20—C19120.9 (6)N1—Ru1—N587.90 (16)
C21—C20—H20119.5N1—Ru1—N791.02 (17)
C19—C20—H20119.5N5—Ru1—N7171.23 (18)
C22—C21—C20119.9 (6)N1—Ru1—N385.26 (17)
C22—C21—H21120.0N5—Ru1—N386.71 (17)
C20—C21—H21120.0N7—Ru1—N384.53 (17)
C21—C22—C23119.1 (7)N1—Ru1—P193.79 (13)
C21—C22—H22120.4N5—Ru1—P193.51 (13)
C23—C22—H22120.4N7—Ru1—P195.25 (13)
C24—C23—C22120.3 (7)N3—Ru1—P1179.02 (12)
C24—C23—H23119.8N1—Ru1—Cl1172.51 (13)
C22—C23—H23119.8N5—Ru1—Cl192.33 (12)
C19—C24—C23120.9 (6)N7—Ru1—Cl187.62 (13)
C19—C24—H24119.5N3—Ru1—Cl187.28 (12)
C23—C24—H24119.5P1—Ru1—Cl193.67 (5)
C30—C25—C26'106.7 (7)C25—P1—C13101.8 (3)
C30—C25—C26118.8 (7)C25—P1—C19103.0 (3)
C26'—C25—C2645.6 (6)C13—P1—C19100.0 (3)
C30—C25—P1120.8 (4)C25—P1—Ru1114.28 (18)
C26'—C25—P1128.3 (7)C13—P1—Ru1120.32 (19)
C26—C25—P1115.2 (6)C19—P1—Ru1114.91 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N8—H8'···Cl10.882.493.025 (6)120

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5462).

References

  • Alcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg Chem 31, 2906–2908.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Cheng, C. J., Tong, H. C., Fong, Y. H., Wang, P. Y., Kuo, Y. L., Lo, Y. H. & Lin, C. H. (2009). Dalton Trans. pp. 4435–4438. [PubMed]
  • Deacon, G. B., Delbridge, E. E., Skelton, B. W. & White, A. H. (1998). Angew. Chem. Int. Ed.37, 2251–2554.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 15, 3998–4004.
  • Govind, B., Satyanarayana, T. & Veera-Reddy, K. (1996). Polyhedron, 15, 1009–1022.
  • Lo, Y. H., Lin Y.-C., Lee, G. H. & Wang, Y. W. (2004). Eur. J. Inorg. Chem. pp. 4616–4623.
  • Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organomet­allics, 24, 3561–3575.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.
  • Tong, H.-C., Hsu, C.-Y. C., Lo, Y.-H., Lin, C.-H. & Wang, Y. (2008). Acta Cryst. E64, m1453. [PMC free article] [PubMed]
  • Tong, H.-C., Hung, Y.-C., Wang, P.-Y., Lin, C.-H. & Lo, Y.-H. (2009). Acta Cryst. E65, m438. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography