PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m774–m775.
Published online 2010 June 16. doi:  10.1107/S160053681002115X
PMCID: PMC3006888

Diaqua­bis­(hydrogen tartrato)copper(II) dihydrate

Abstract

The title complex, [Cu(C4H5O6)2(H2O)2]·2H2O, contains a CuII ion lying on an inversion centre. The coordination geometry of the CuII ion is a distorted octa­hedron with four O atoms from two hydrogen tartrate ions occupying the equatorial positions and two O atoms from two coordinated water mol­ecules occupying the axial positions. In the crystal structure, inter­molecular O—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For background to coordination polymers, see: Stang & Olenyuk (1997 [triangle]); Aakeroy & Seddon (1993 [triangle]); Munakata et al. (1999 [triangle]); Fujita et al. (1994 [triangle]); Hagrman et al. (1997 [triangle]). For the optical activity of tartaric acid, see: Synoradzki et al. (2008 [triangle]). For related structures, see: Jian et al. (2005 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m774-scheme1.jpg

Experimental

Crystal data

  • [Cu(C4H5O6)2(H2O)2]·2H2O
  • M r = 433.76
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m774-efi1.jpg
  • a = 7.1577 (8) Å
  • b = 14.0989 (14) Å
  • c = 7.8910 (8) Å
  • β = 109.136 (2)°
  • V = 752.32 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.54 mm−1
  • T = 100 K
  • 0.42 × 0.15 × 0.08 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.563, T max = 0.885
  • 12361 measured reflections
  • 3298 independent reflections
  • 3001 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.082
  • S = 1.20
  • 3298 reflections
  • 121 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002115X/is2556sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002115X/is2556Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HHA gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research grant (No. 1001/PKIMIA/811142). HKF and MH thank the Malaysian Government and USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks USM for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

In recent years, there has been great interest in the study of coordination polymers with network structures due to their possible chemical and physical properties (Stang & Olenyuk, 1997; Aakeroy & Seddon, 1993; Munakata et al., 1999). A number of unique networks have been obtained by reactions between transition metal ions and rationally designed organic ligands (Fujita et al., 1994; Hagrman et al., 1997). Tartaric acid has been used as building blocks to construct 1D, 2D and 3D frameworks due to the diversity of binding modes of the carboxyl group and hydroxyl group in the tartaric acid. It has many applications such as in making silver mirrors, in the manufacture of soft drinks, to provide tartness to foods, in tanning leather, and in making blueprints. Tartaric acid also has optical activity (Synoradzki et al., 2008). We report the crystal structure of (I).

(I) consists of a copper ion lying on a crystallographic inversion centre, two hydrogen tartrate ions, two coordinated water molecules and two uncoordinated water molecules (Fig. 1). The environment about the copper(II) ion is a distorted octahedron with four oxygen atoms from two hydrogen tartrate ions and two oxygen atoms from the coordinated water molecules completing the coordination. All the four oxygen atoms from the two hydrogen tartrate anions occupy equatorial positions and the oxygen atoms from the water molecules occupy in the axial positions. The equatorial and axial distances of Cu—O [Cu—O1 = 1.9327 (7) Å; Cu—O2 = 1.9637 (7) Å and Cu—O1W = 2.4651 (8) Å] agree with those reported for similar systems (Jian et al., 2005).

In the crystal structure, intermolecular O1W—H12···O4, O4—H4···O1W, O2—H5···O2W, O6—H6···O3, O1W—H11···O5, O2W—H21···O1, O2W—H22···O5, C2—H2···O6 and C3—H3···O4 hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

Experimental

DL-Tartaric acid (0.02 mol, 3.0 g) was dissolved in distilled water in a flat bottom flask with magnetic stirrer. CuCl2 (0.01 mol, 1.45 g) was added in small portions with continuous stirring for three hours at room temperature. The blue crystals formed were washed with N,N-dimethylformamide then with methanol and dried at 353 K.

Refinement

Atom H5 was located in a difference Fourier map and refined freely. The remaining H atoms, excepting the water H atoms, were positioned geometrically (C—H = 0.98 Å and O—H = 0.82 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The water H atoms were located in the difference map and then treated as riding atoms on the parent O atoms, with O—H = 0.8936–0.9551 Å and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. C1A–C4A/O1A–O6A/O1WA/O2WA are generated by the symmetry code 1-x, -y, -z.
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network.

Crystal data

[Cu(C4H5O6)2(H2O)2]·2H2OF(000) = 446
Mr = 433.76Dx = 1.915 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6852 reflections
a = 7.1577 (8) Åθ = 3.6–35.0°
b = 14.0989 (14) ŵ = 1.54 mm1
c = 7.8910 (8) ÅT = 100 K
β = 109.136 (2)°Plate, blue
V = 752.32 (14) Å30.42 × 0.15 × 0.08 mm
Z = 2

Data collection

Bruker APEXII DUO CCD area-detector diffractometer3298 independent reflections
Radiation source: fine-focus sealed tube3001 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 35.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −11→11
Tmin = 0.563, Tmax = 0.885k = −21→22
12361 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.20w = 1/[σ2(Fo2) + (0.0456P)2 + 0.1293P] where P = (Fo2 + 2Fc2)/3
3298 reflections(Δ/σ)max = 0.001
121 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = −0.45 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.00000.00000.00746 (6)
O10.39754 (10)0.03576 (5)0.18906 (9)0.00912 (12)
O20.75259 (11)0.04633 (5)0.16577 (9)0.00829 (12)
O30.48127 (11)0.11064 (5)0.45343 (10)0.00963 (12)
O40.69066 (11)0.24378 (5)0.22934 (10)0.00920 (12)
H40.62090.27640.27050.014*
O51.08144 (12)0.25669 (5)0.29938 (12)0.01450 (14)
O61.13354 (11)0.12193 (5)0.45912 (10)0.01096 (13)
H61.24070.12300.44240.016*
C10.52178 (13)0.07526 (6)0.32500 (12)0.00733 (14)
C20.73709 (13)0.08036 (6)0.33188 (11)0.00687 (14)
H20.81810.04050.43030.008*
C30.80915 (13)0.18289 (6)0.36467 (12)0.00714 (14)
H30.80080.20360.48050.009*
C41.02337 (14)0.19094 (6)0.37032 (12)0.00806 (14)
O1W0.46452 (11)0.16624 (5)−0.10244 (10)0.01087 (13)
H110.33850.1878−0.13560.016*
H120.53890.19170.01200.016*
O2W0.94287 (12)0.05593 (6)0.78307 (13)0.01680 (16)
H210.83160.03150.79430.025*
H220.94920.11910.79090.025*
H50.832 (5)0.0119 (17)0.174 (4)0.034 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.00525 (8)0.00959 (9)0.00761 (8)−0.00150 (5)0.00221 (6)−0.00224 (4)
O10.0068 (3)0.0113 (3)0.0093 (3)−0.0019 (2)0.0027 (2)−0.0022 (2)
O20.0063 (3)0.0096 (3)0.0089 (3)0.0004 (2)0.0025 (2)−0.0024 (2)
O30.0082 (3)0.0113 (3)0.0103 (3)−0.0005 (2)0.0042 (2)−0.0021 (2)
O40.0084 (3)0.0086 (3)0.0103 (3)0.0030 (2)0.0026 (2)0.0020 (2)
O50.0092 (3)0.0115 (3)0.0228 (4)−0.0008 (2)0.0052 (3)0.0063 (3)
O60.0064 (3)0.0098 (3)0.0168 (3)0.0018 (2)0.0041 (2)0.0043 (2)
C10.0068 (3)0.0063 (3)0.0089 (3)0.0001 (3)0.0026 (3)0.0008 (3)
C20.0055 (3)0.0071 (3)0.0080 (3)−0.0003 (2)0.0021 (3)−0.0006 (3)
C30.0061 (3)0.0068 (3)0.0083 (3)0.0001 (3)0.0019 (3)0.0002 (2)
C40.0071 (3)0.0073 (3)0.0093 (3)−0.0003 (3)0.0021 (3)−0.0010 (3)
O1W0.0090 (3)0.0101 (3)0.0127 (3)0.0002 (2)0.0024 (2)0.0003 (2)
O2W0.0104 (3)0.0101 (3)0.0321 (4)0.0008 (2)0.0098 (3)0.0007 (3)

Geometric parameters (Å, °)

Cu1—O11.9327 (7)O5—C41.2239 (12)
Cu1—O1i1.9327 (7)O6—C41.3027 (11)
Cu1—O2i1.9637 (7)O6—H60.8200
Cu1—O21.9637 (7)C1—C21.5259 (13)
Cu1—O1W2.4651 (8)C2—C31.5281 (13)
Cu1—O1Wi2.4651 (8)C2—H20.9800
O1—C11.2753 (11)C3—C41.5235 (13)
O2—C21.4339 (11)C3—H30.9800
O2—H50.73 (3)O1W—H110.9051
O3—C11.2461 (11)O1W—H120.9551
O4—C31.4152 (11)O2W—H210.8982
O4—H40.8200O2W—H220.8936
O1—Cu1—O1W88.90 (3)O3—C1—C2116.99 (8)
O1—Cu1—O1Wi91.11 (3)O1—C1—C2117.92 (8)
O1W—Cu1—O282.85 (3)O2—C2—C1109.36 (7)
O1W—Cu1—O1Wi180O2—C2—C3110.39 (7)
O1W—Cu1—O282.85 (3)C1—C2—C3109.36 (7)
O1Wi—Cu1—O2i82.85 (3)O2—C2—H2109.2
O1i—Cu1—O1Wi88.90 (3)C1—C2—H2109.2
O1—Cu1—O1i180.00 (6)C3—C2—H2109.2
O1—Cu1—O2i95.83 (3)O4—C3—C4108.99 (7)
O1i—Cu1—O2i84.17 (3)O4—C3—C2111.13 (7)
O1—Cu1—O284.17 (3)C4—C3—C2110.86 (7)
O1i—Cu1—O295.83 (3)O4—C3—H3108.6
O2i—Cu1—O2180.0C4—C3—H3108.6
C1—O1—Cu1115.26 (6)C2—C3—H3108.6
C2—O2—Cu1112.96 (5)O5—C4—O6125.12 (9)
C2—O2—H5116 (2)O5—C4—C3122.17 (8)
Cu1—O2—H5111 (2)O6—C4—C3112.71 (8)
C3—O4—H4109.5H11—O1W—H12110.0
C4—O6—H6109.5H21—O2W—H22113.7
O3—C1—O1125.09 (9)
O2i—Cu1—O1—C1−176.70 (7)O3—C1—C2—O2−173.54 (8)
O2—Cu1—O1—C13.30 (7)O1—C1—C2—O26.20 (11)
O1—Cu1—O2—C20.36 (6)O3—C1—C2—C3−52.55 (10)
O1i—Cu1—O2—C2−179.64 (6)O1—C1—C2—C3127.19 (8)
O1W—Cu1—O1—C1−79.64 (6)O2—C2—C3—O462.36 (9)
O1Wi—Cu1—O1—C1100.37 (6)C1—C2—C3—O4−58.01 (9)
O1W—Cu1—O2—C289.98 (6)O2—C2—C3—C4−59.01 (9)
O1Wi—Cu1—O2—C2−90.02 (6)C1—C2—C3—C4−179.37 (7)
Cu1—O1—C1—O3173.56 (7)O4—C3—C4—O516.25 (12)
Cu1—O1—C1—C2−6.17 (10)C2—C3—C4—O5138.88 (9)
Cu1—O2—C2—C1−3.22 (9)O4—C3—C4—O6−164.52 (8)
Cu1—O2—C2—C3−123.59 (6)C2—C3—C4—O6−41.90 (10)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O1Wii0.821.912.7200 (12)170
O2—H5···O2Wiii0.72 (3)1.82 (3)2.5331 (12)170 (3)
O6—H6···O3iv0.821.702.5092 (12)167
O1W—H11···O5v0.911.912.8119 (11)175 (1)
O1W—H12···O40.961.852.8091 (11)177
O2W—H21···O1vi0.901.942.8298 (12)173
O2W—H22···O5ii0.891.982.8100 (12)154
C2—H2···O6iii0.982.433.2727 (12)143
C3—H3···O4ii0.982.463.4160 (13)166

Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) −x+2, −y, −z+1; (iv) x+1, y, z; (v) x−1, −y+1/2, z−1/2; (vi) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2556).

References

  • Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev.6, 397–407.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fujita, M., Kwon, Y. J., Miyazawa, M. & Ogura, K. (1994). J. Chem. Soc. Chem. Commun.17, 1997–1998.
  • Hagrman, D., Zubieta, C., Rose, D. J., Zubieta, J. & Haushalter, R. C. (1997). Angew. Chem. Int. Ed. Engl.35, 873–877.
  • Jian, F. F., Zhao, P. & Wang, Q. (2005). J. Coord. Chem.58, 1133–1138.
  • Munakata, M., Wu, L. P. & Kuroda-sowa, T. (1999). Inorg. Chem.46, 17–3.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stang, P. J. & Olenyuk, B. (1997). Acc. Chem. Res.30, 502–518.
  • Synoradzki, L., Bernas, U. & Ruskowski, P. (2008). Org. Prep. Proced. Int.40, 163–200.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography