PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1543.
Published online 2010 June 5. doi:  10.1107/S1600536810020490
PMCID: PMC3006887

(2-Chloro-8-methyl­quinolin-3-yl)methanol

Abstract

The mol­ecule of title compound, C11H10ClNO, is close to being planar (r.m.s deviation for the non-H atoms = 0.017 Å). In the crystal, mol­ecules inter­act by way of O—H(...)O hydrogen bonds, generating C(2) chains propagating in [010]. The crystal structure is consolidated by C—H(...)π inter­actions and aromatic π–π stacking inter­actions [centroid–centroid distance = 3.661 (2) Å].

Related literature

For a related structure and background references, see: Roopan et al. (2010 [triangle]). For a similar structure, see: Khan et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1543-scheme1.jpg

Experimental

Crystal data

  • C11H10ClNO
  • M r = 207.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1543-efi1.jpg
  • a = 14.963 (2) Å
  • b = 4.632 (1) Å
  • c = 14.469 (2) Å
  • β = 103.612 (1)°
  • V = 974.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 290 K
  • 0.40 × 0.24 × 0.11 mm

Data collection

  • Oxford Xcalibur Eos(Nova) CCD detector diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009 [triangle]) T min = 0.871, T max = 0.962
  • 7607 measured reflections
  • 1723 independent reflections
  • 790 reflections with I > 2σ(I)
  • R int = 0.167

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.135
  • S = 0.85
  • 1723 reflections
  • 129 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020490/hb5470sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020490/hb5470Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, India, for the use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

As part of our program which aimed to develop new selective and environmentally friendly methodologies for the preparation of 2-chloroquinolines (Roopan et al., 2010), we report here crystal structure of the title compound, (I).

The title molecule (I), (Fig. 1), except the hydroxyl and methyl H atoms, close to planar (r.m.s deviation 0.017 Å). The values of the geometric parameters in (I) are comparable to those of some similar structures (Khan et al., 2009).

In the solid-state, the molecules are linked via intermolecular O—H···O hydrogen bonds (Table 1, Fig. 2). The crystal structure is further stabilized by an intermolecular C–H···π interactions between the methylene H atom of ethenol substituent and the pyridine ring of an adjacent molecule, with a C10–H10A···Cg1ii separation of 2.75 Å (Table 1, Cg1 is the centroid of N1/C1–C3/C8/C9 pyridine ring; symmetry code: (ii) x, y + 1, z). In addition, the packing mode results in stabilizing π-π stacking interactions [Cg1···Cg2ii = 3.661 (2) Å, where Cg1 and Cg2 are the centroids of the N1/C1–C3/C8/C9 and C4–C9 rings].

Experimental

2-Chloro-8-methylquinoline-3-carbaldehyde (206 mg, 1 mmol), sodium borohydride (38 mg, 1 mmol) and catalytic amount of montmorillonite K-10 were taken in an open vessel and the resulting mixture was irradiating at 500 W for 4 min. Ethylacetate was poured into the reaction mixture and filtered off. The filtrated after removal of solvent ethy lacetate was subjected to column chromatography packed with silica and ethyl acetate/petroleum ether was used as the eluant. Colourless plates of (I) were grown by solvent evaporation from a solution of the compound in chloroform.

Refinement

H atoms were positioned geometrically, with C—H = 0.93- 0.97 Å, and refined a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). The value of Rint [0.167] is greater than 0.12, which may reflect the poor crystal quality.

Figures

Fig. 1.
The molecule of (I), showing 50% probability displacement ellipsoids.
Fig. 2.
A view of the packing of (I) with intermolecular O–H···O hydrogen bonding down the b axis. The H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C11H10ClNOF(000) = 432
Mr = 207.65Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 972 reflections
a = 14.963 (2) Åθ = 2.0–20.5°
b = 4.632 (1) ŵ = 0.35 mm1
c = 14.469 (2) ÅT = 290 K
β = 103.612 (1)°Plate, colourless
V = 974.7 (3) Å30.40 × 0.24 × 0.11 mm
Z = 4

Data collection

Oxford Xcalibur Eos(Nova) CCD detector diffractometer1723 independent reflections
Radiation source: Enhance (Mo) X-ray Source790 reflections with I > 2σ(I)
graphiteRint = 0.167
ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009)h = −17→17
Tmin = 0.871, Tmax = 0.962k = −5→5
7607 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 0.85w = 1/[σ2(Fo2) + (0.0492P)2] where P = (Fo2 + 2Fc2)/3
1723 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.13301 (8)0.6900 (2)−0.03546 (7)0.0599 (5)
O10.0342 (2)0.8800 (5)0.2237 (2)0.0534 (11)
N10.2487 (2)0.3588 (7)0.0784 (2)0.0372 (11)
C10.1808 (3)0.5392 (8)0.0749 (2)0.0368 (14)
C20.1436 (3)0.6216 (7)0.1526 (3)0.0340 (14)
C30.1835 (3)0.4990 (8)0.2376 (3)0.0398 (16)
C40.2981 (3)0.1674 (9)0.3335 (3)0.0475 (17)
C50.3681 (3)−0.0242 (10)0.3370 (3)0.0551 (17)
C60.3985 (3)−0.0855 (9)0.2554 (3)0.0538 (17)
C70.3611 (3)0.0351 (9)0.1686 (3)0.0427 (17)
C80.2875 (3)0.2323 (8)0.1643 (3)0.0365 (12)
C90.2566 (3)0.3003 (8)0.2465 (3)0.0369 (14)
C100.0635 (3)0.8293 (8)0.1397 (3)0.0436 (16)
C110.3954 (3)−0.0328 (10)0.0817 (3)0.0589 (17)
H1O0.009700.734000.238300.0800*
H30.162300.547000.291000.0480*
H40.277900.209700.388100.0570*
H50.39560−0.113900.394100.0660*
H60.44670−0.215400.260100.0640*
H10A0.081101.011700.116300.0520*
H10B0.012300.752500.092000.0520*
H11A0.44600−0.165200.098100.0880*
H11B0.415400.141900.057100.0880*
H11C0.34680−0.118400.034400.0880*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0614 (8)0.0749 (9)0.0457 (7)0.0113 (7)0.0170 (6)0.0132 (6)
O10.060 (2)0.0369 (17)0.078 (2)0.0016 (16)0.0457 (18)−0.0011 (16)
N10.042 (2)0.035 (2)0.0375 (19)−0.0031 (18)0.0153 (17)−0.0004 (17)
C10.044 (3)0.031 (2)0.037 (2)−0.007 (2)0.013 (2)−0.0008 (19)
C20.040 (3)0.028 (2)0.037 (2)−0.005 (2)0.015 (2)−0.003 (2)
C30.044 (3)0.043 (3)0.039 (2)−0.009 (2)0.023 (2)−0.006 (2)
C40.051 (3)0.052 (3)0.042 (3)−0.010 (3)0.016 (2)0.000 (2)
C50.053 (3)0.063 (3)0.047 (3)−0.004 (3)0.007 (2)0.012 (2)
C60.038 (3)0.051 (3)0.071 (3)−0.001 (2)0.010 (3)0.011 (3)
C70.037 (3)0.044 (3)0.048 (3)−0.006 (2)0.012 (2)0.002 (2)
C80.037 (2)0.036 (2)0.038 (2)−0.007 (2)0.012 (2)−0.002 (2)
C90.043 (3)0.036 (2)0.034 (2)−0.007 (2)0.014 (2)−0.003 (2)
C100.046 (3)0.038 (2)0.053 (3)−0.004 (2)0.024 (2)−0.002 (2)
C110.050 (3)0.069 (3)0.063 (3)0.010 (3)0.024 (2)−0.006 (3)

Geometric parameters (Å, °)

Cl1—C11.735 (3)C7—C111.499 (6)
O1—C101.406 (5)C7—C81.421 (6)
O1—H1O0.8200C8—C91.409 (6)
N1—C81.373 (5)C3—H30.9300
N1—C11.307 (5)C4—H40.9300
C1—C21.419 (6)C5—H50.9300
C2—C101.514 (6)C6—H60.9300
C2—C31.359 (6)C10—H10A0.9700
C3—C91.412 (6)C10—H10B0.9700
C4—C91.408 (6)C11—H11A0.9600
C4—C51.365 (6)C11—H11B0.9600
C5—C61.391 (6)C11—H11C0.9600
C6—C71.368 (6)
C10—O1—H1O110.00O1—C10—C2113.5 (3)
C1—N1—C8117.8 (3)C2—C3—H3119.00
Cl1—C1—N1116.2 (3)C9—C3—H3119.00
Cl1—C1—C2117.9 (3)C5—C4—H4120.00
N1—C1—C2126.0 (3)C9—C4—H4120.00
C1—C2—C3115.7 (4)C4—C5—H5120.00
C1—C2—C10121.3 (4)C6—C5—H5120.00
C3—C2—C10122.9 (4)C5—C6—H6118.00
C2—C3—C9121.4 (4)C7—C6—H6118.00
C5—C4—C9119.4 (4)O1—C10—H10A109.00
C4—C5—C6120.2 (4)O1—C10—H10B109.00
C5—C6—C7123.4 (4)C2—C10—H10A109.00
C6—C7—C11122.5 (4)C2—C10—H10B109.00
C8—C7—C11120.9 (4)H10A—C10—H10B108.00
C6—C7—C8116.6 (4)C7—C11—H11A109.00
N1—C8—C9121.0 (4)C7—C11—H11B109.00
C7—C8—C9120.8 (4)C7—C11—H11C109.00
N1—C8—C7118.2 (4)H11A—C11—H11B109.00
C3—C9—C4122.4 (4)H11A—C11—H11C109.00
C4—C9—C8119.6 (4)H11B—C11—H11C110.00
C3—C9—C8118.0 (4)
C8—N1—C1—Cl1−179.2 (3)C9—C4—C5—C60.5 (7)
C8—N1—C1—C21.0 (6)C5—C4—C9—C3179.6 (4)
C1—N1—C8—C7179.8 (4)C5—C4—C9—C80.4 (6)
C1—N1—C8—C9−1.5 (6)C4—C5—C6—C7−0.7 (7)
Cl1—C1—C2—C3−179.7 (3)C5—C6—C7—C80.0 (7)
Cl1—C1—C2—C101.3 (5)C5—C6—C7—C11179.6 (4)
N1—C1—C2—C30.1 (6)C6—C7—C8—N1179.6 (4)
N1—C1—C2—C10−178.9 (4)C6—C7—C8—C90.9 (6)
C1—C2—C3—C9−0.7 (6)C11—C7—C8—N10.0 (6)
C10—C2—C3—C9178.3 (4)C11—C7—C8—C9−178.7 (4)
C1—C2—C10—O1178.4 (3)N1—C8—C9—C31.0 (6)
C3—C2—C10—O1−0.6 (5)N1—C8—C9—C4−179.8 (4)
C2—C3—C9—C4−179.1 (4)C7—C8—C9—C3179.7 (4)
C2—C3—C9—C80.1 (6)C7—C8—C9—C4−1.1 (6)

Hydrogen-bond geometry (Å, °)

Cg1 is a centroid of the N1/C1–C3/C8/C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1i0.821.902.712 (4)174
C10—H10A···Cg1ii0.972.753.557 (4)141

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5470).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Khan, F. N., Subashini, R., Kushwaha, A. K., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2722. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Roopan, S. M., Khan, F. N., Kumar, A. S., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o1542. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography