PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m855–m856.
Published online 2010 June 26. doi:  10.1107/S1600536810024207
PMCID: PMC3006886

Poly[(μ3-4-amino­benzene­sulfonato-κ3 N:O:O)(triphenyl­phosphine-κP)silver(I)]

Abstract

In the title 1:1 silver 4-amino­benzene­sulfonate adduct with triphenyl­phosphine, [Ag(C6H6NO3S)(C18H15P)]n, the sulfon­ate –SO3 unit bridges, through only one O atom, two phosphine-coordinated Ag atoms, forming a centrosymmetric Ag2O2 rhombus. The Ag+ cation adopts a considerably distorted a tetra­hedral coordination. In the crystal, adjacent binuclear mol­ecules are connected into a layer motif through the amino group of the anion; the layers are perpendicular to the a axis.

Related literature

For the synthesis of the silver reactant used in the synthesis, see: Hanna & Ng (1999 [triangle]); Ng & Othman (1997 [triangle]). For the crystal structure of 4-amino­benzene­sulfonic acid, see: Banu & Golzar Hossain (2006 [triangle]); Low & Glidewell (2002 [triangle]); Rae & Maslen (1962 [triangle]). For literature on silver 4-amino­benzene­sulfonate, see: Léon (1945 [triangle], 1992 [triangle]); Pan et al. (2003 [triangle]); Schreuer (1999 [triangle]). For other metal derivatives, see: Brodersen & Beck (2004 [triangle]); Li et al. (2006 [triangle]); Liu, Ma & Yang (2007 [triangle]); Liu, Wu et al. (2007 [triangle]); Ou et al. (2008 [triangle]); Wu et al. (2008 [triangle]); Zheng et al. (2002 [triangle]). For a review on metal sulfonates, see: Cai (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m855-scheme1.jpg

Experimental

Crystal data

  • [Ag(C6H6NO3S)(C18H15P)]
  • M r = 542.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m855-efi4.jpg
  • a = 28.2593 (15) Å
  • b = 9.4085 (5) Å
  • c = 18.5765 (10) Å
  • β = 118.229 (1)°
  • V = 4351.6 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.12 mm−1
  • T = 100 K
  • 0.35 × 0.30 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.695, T max = 0.946
  • 19921 measured reflections
  • 4995 independent reflections
  • 4393 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.073
  • S = 1.02
  • 4995 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.93 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]) and OLEX (Dolomanov et al., 2003 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024207/su2190sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024207/su2190Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The crystal structure of silver 4-aminobenzenesulfonate, sulfargenta, a chemical whose ability to disinfect contaminated water was reported in 1945 (Léon, 1945; 1992), features a polymeric ribbon structure in which the nitrogen and three oxygen atoms are all involved in coordinating to silver centers (Schreuer, 1999; Pan et al., 2003). The 4-aminobenzenesulfonate ion has been studied in other metal salts; the sulfonate part of the ion exhibits diverse coordination modes, as summarized in a review of metal arenesulfonates (Cai, 2004).

Introducing a monodentate ligand such as triphenylphosphine to silver 4-aminobenzenesulfonate should lower the dimensionality (i.e., the adduct should exist as a monomeric molecule) following the suggestion of lowering the dimensionality of the related metal carboxylates by the use of bidentate N-heterocycles. However, the hexamethyleneteramine adduct has a layer structure in which only the hexamethylenetetramine ligand participates in µ3-bridging (Zheng et al., 2002); the 1,1'-(1,4-butanediyl)-bis(imidazole) adduct similarly features an uncoordinated 4-aminobenzesulfonate group (Li et al., 2006). Other bidentate N-heterocycles result in silver 4-aminobenzenesulfonate adducts displaying chain or ladder motifs (Liu Ma & Yang, 2007; Liu, Wy et al., 2007; Wu et al., 2008). In the present study, the donor ligand is triphenylphosphine.

In the title 1:1 adduct with triphenylphosphine the sulfonate –SO3 group bridges, through only one oxygen atom, two phosphine-coordinated silver atoms to furnish a centrosymmetric Ag2O2 rhombus (Fig. 1). The silver atom has a tetrahedral geometry as seen from the selected bond distances and angles involving atom Ag1, given in Table 1. In the –SO3 portion, one bond is distinctly longer than the other two [1.489 (2) Å compared to 1.444 (2) and 1.457 (2) Å]; the oxygen atom involved in the longer bond is that which bridges the two silver atoms. Sulfanilic acid itself exists as a zwitterion but the longest bond is only slightly longer than the other two [1.476 (1) Å compared to 1.445 (1), and 1.457 (1) Å] (Low & Glidewell, 2002). On the other hand, the bonds are more symmetrical in the two modifications of the monohydrated acid (Banu et al., 2006; Rae & Maslen, 1962).

In the crystal structures of metal 4-aminobenzesulfonates (without other ligands) for which the anion is coordinated to the metal, the amino group is not usually involved in additional coordination. The exceptions are limited to silver (Schreuer, 1999; Pan et al., 2003) and mercury (Brodersen & Beck, 2004) derivatives only. In the crystal structute of the title compound adjacent [Ag(C6H6NO3S)(C18H15P)]2 dimers are connected into a layer motif through the amino moiety. The layers are perpendicular to the a-axis of the monoclinic unit cell (Fig. 2), with the aromatic rings of the phosphine ligand protruding into the space between the layers.

Experimental

Silver acetate (1 mmol, 0.17 g) and triphenylphosphine (2 mmol, 0.53 g) were heated in ethanol (50 ml) until the reactants dissolved completely. Gray insoluble material was removed by filtration and the solvent removed to yield bis(silver acetate.2triphenylphosphine) monohydrate sesquiethanol (Hanna & Ng, 1999; Ng & Othman, 1997). The adduct (0.5 mmol, 0.69 g) and 4-aminobenzenesulfonic acid (1 mmol, 0.17 g) were placed in a convection tube; the tube was filled with methanol and kept at 343 K. Colorless crystals were collected after 3 days (m.p. > 573 K).

Refinement

Hydrogen atoms were placed in calculated positions and treated as riding atoms: C–H 0.95, N–H 0.86 Å with Uiso(H) = 1.2Ueq(parent c- or N-atom).

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of a portion of the asymmetric unit of the two-dimensional network structure of the title compound; ellipsoids are drawn at the 70% probability level and H atoms are of arbitrary radius. Symmetry transformation: ...
Fig. 2.
OLEX (Dolomanov et al., 2003) representation of the layer motif in the crystal structure of the title compound.

Crystal data

[Ag(C6H6NO3S)(C18H15P)]F(000) = 2192
Mr = 542.32Dx = 1.656 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8286 reflections
a = 28.2593 (15) Åθ = 2.4–28.2°
b = 9.4085 (5) ŵ = 1.12 mm1
c = 18.5765 (10) ÅT = 100 K
β = 118.229 (1)°Plate, colorless
V = 4351.6 (4) Å30.35 × 0.30 × 0.05 mm
Z = 8

Data collection

Bruker SMART APEX diffractometer4995 independent reflections
Radiation source: fine-focus sealed tube4393 reflections with I > 2σ(I)
graphiteRint = 0.038
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −36→36
Tmin = 0.695, Tmax = 0.946k = −11→12
19921 measured reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0414P)2 + 3.5194P] where P = (Fo2 + 2Fc2)/3
4995 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = −0.46 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.692581 (6)0.726456 (18)0.523729 (10)0.01618 (6)
S10.80640 (2)0.94131 (6)0.63130 (3)0.01479 (11)
P10.61400 (2)0.83696 (6)0.51114 (3)0.01347 (12)
O10.78580 (6)0.80116 (17)0.59157 (9)0.0175 (3)
O20.86414 (6)0.94896 (18)0.66660 (10)0.0215 (3)
O30.77760 (6)1.05818 (17)0.57660 (9)0.0199 (3)
N10.76252 (7)1.0121 (2)0.91345 (11)0.0172 (4)
H1A0.77490.94310.94780.021*
H1B0.72871.02010.89780.021*
C10.55223 (9)0.7331 (2)0.45987 (14)0.0152 (4)
C20.54236 (9)0.6587 (3)0.38905 (15)0.0241 (5)
H20.56750.66180.36870.029*
C30.49531 (10)0.5800 (3)0.34867 (16)0.0283 (6)
H30.48810.53130.29980.034*
C40.45886 (9)0.5712 (2)0.37823 (15)0.0236 (5)
H40.42720.51570.35040.028*
C50.46888 (9)0.6441 (2)0.44884 (15)0.0211 (5)
H50.44400.63860.46970.025*
C60.51523 (9)0.7254 (2)0.48923 (14)0.0171 (4)
H60.52170.77610.53730.021*
C70.59882 (8)1.0046 (2)0.45534 (12)0.0149 (4)
C80.54666 (9)1.0490 (2)0.40320 (13)0.0189 (4)
H80.51720.98860.39320.023*
C90.53739 (10)1.1817 (3)0.36545 (15)0.0235 (5)
H90.50171.21150.32980.028*
C100.58010 (10)1.2702 (2)0.37993 (15)0.0228 (5)
H100.57371.36120.35480.027*
C110.63252 (10)1.2255 (2)0.43143 (14)0.0216 (5)
H110.66191.28590.44100.026*
C120.64191 (9)1.0932 (2)0.46869 (13)0.0186 (4)
H120.67771.06270.50330.022*
C130.61624 (8)0.8853 (2)0.60765 (12)0.0141 (4)
C140.63746 (9)0.7881 (2)0.67208 (14)0.0184 (5)
H140.65280.70190.66630.022*
C150.63632 (9)0.8164 (3)0.74441 (14)0.0214 (5)
H150.65010.74880.78750.026*
C160.61496 (9)0.9438 (2)0.75397 (14)0.0197 (5)
H160.61410.96300.80360.024*
C170.59487 (8)1.0430 (2)0.69125 (13)0.0171 (4)
H170.58071.13050.69810.021*
C180.59550 (8)1.0140 (2)0.61829 (13)0.0157 (4)
H180.58181.08210.57540.019*
C190.79126 (8)0.9533 (2)0.71350 (12)0.0132 (4)
C200.82240 (8)0.8805 (2)0.78608 (13)0.0154 (4)
H200.85070.82030.79060.019*
C210.81224 (8)0.8956 (2)0.85197 (13)0.0157 (4)
H210.83350.84570.90140.019*
C220.77081 (8)0.9840 (2)0.84538 (12)0.0144 (4)
C230.73961 (8)1.0556 (2)0.77244 (13)0.0166 (4)
H230.71121.11540.76770.020*
C240.74968 (8)1.0406 (2)0.70679 (13)0.0157 (4)
H240.72821.08990.65720.019*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.01579 (9)0.01658 (10)0.01879 (10)0.00209 (6)0.01033 (7)0.00064 (6)
S10.0160 (2)0.0163 (3)0.0144 (2)−0.00364 (19)0.0091 (2)−0.00339 (19)
P10.0141 (2)0.0126 (3)0.0154 (3)0.00022 (19)0.0084 (2)0.0003 (2)
O10.0188 (7)0.0178 (8)0.0184 (8)−0.0042 (6)0.0110 (6)−0.0062 (6)
O20.0177 (7)0.0275 (9)0.0218 (8)−0.0059 (6)0.0114 (6)−0.0070 (7)
O30.0261 (8)0.0192 (8)0.0166 (7)−0.0013 (6)0.0120 (7)0.0006 (6)
N10.0208 (9)0.0170 (9)0.0163 (9)−0.0019 (7)0.0109 (7)−0.0007 (7)
C10.0157 (10)0.0099 (10)0.0192 (11)0.0017 (7)0.0077 (8)0.0023 (8)
C20.0212 (11)0.0267 (13)0.0279 (12)−0.0021 (9)0.0143 (10)−0.0087 (10)
C30.0255 (12)0.0268 (14)0.0290 (13)−0.0015 (10)0.0100 (10)−0.0119 (10)
C40.0178 (10)0.0139 (11)0.0320 (13)−0.0007 (8)0.0060 (9)0.0003 (9)
C50.0182 (10)0.0173 (12)0.0293 (12)0.0006 (8)0.0124 (9)0.0052 (9)
C60.0178 (10)0.0153 (11)0.0179 (11)0.0014 (8)0.0082 (9)0.0018 (8)
C70.0204 (10)0.0133 (10)0.0145 (9)−0.0003 (8)0.0111 (8)0.0003 (8)
C80.0203 (10)0.0191 (11)0.0209 (11)0.0001 (9)0.0127 (9)0.0022 (9)
C90.0269 (12)0.0229 (12)0.0240 (12)0.0071 (10)0.0149 (10)0.0065 (10)
C100.0375 (14)0.0138 (11)0.0237 (12)0.0019 (9)0.0200 (11)0.0027 (9)
C110.0314 (12)0.0191 (12)0.0190 (11)−0.0083 (9)0.0157 (10)−0.0046 (9)
C120.0212 (10)0.0196 (11)0.0166 (10)−0.0043 (9)0.0101 (9)−0.0023 (9)
C130.0134 (9)0.0157 (11)0.0136 (9)−0.0005 (8)0.0067 (8)−0.0005 (8)
C140.0229 (11)0.0126 (11)0.0208 (11)0.0035 (8)0.0113 (9)0.0029 (8)
C150.0288 (12)0.0162 (11)0.0213 (11)0.0046 (9)0.0136 (10)0.0052 (9)
C160.0234 (11)0.0201 (12)0.0188 (10)−0.0014 (9)0.0125 (9)−0.0015 (9)
C170.0182 (10)0.0129 (10)0.0229 (11)−0.0006 (8)0.0119 (9)−0.0020 (8)
C180.0151 (9)0.0124 (10)0.0190 (10)0.0003 (8)0.0076 (8)0.0025 (8)
C190.0165 (9)0.0121 (10)0.0130 (9)−0.0030 (8)0.0086 (8)−0.0036 (8)
C200.0159 (9)0.0124 (10)0.0180 (10)0.0005 (8)0.0080 (8)−0.0015 (8)
C210.0179 (10)0.0125 (10)0.0144 (10)0.0001 (8)0.0059 (8)0.0006 (8)
C220.0164 (9)0.0129 (10)0.0147 (9)−0.0043 (8)0.0080 (8)−0.0013 (8)
C230.0156 (9)0.0169 (11)0.0188 (10)0.0017 (8)0.0095 (8)−0.0022 (8)
C240.0176 (10)0.0141 (10)0.0142 (10)0.0008 (8)0.0065 (8)0.0009 (8)

Geometric parameters (Å, °)

Ag1—P12.3614 (6)C8—H80.9500
Ag1—O12.4252 (15)C9—C101.384 (4)
Ag1—O1i2.5031 (16)C9—H90.9500
Ag1—N1ii2.3749 (18)C10—C111.395 (4)
S1—O21.4441 (15)C10—H100.9500
S1—O31.4565 (17)C11—C121.388 (3)
S1—O11.4885 (16)C11—H110.9500
S1—C191.774 (2)C12—H120.9500
P1—C131.821 (2)C13—C141.396 (3)
P1—C71.824 (2)C13—C181.400 (3)
P1—C11.826 (2)C14—C151.385 (3)
O1—Ag1i2.5031 (16)C14—H140.9500
N1—C221.416 (3)C15—C161.391 (3)
N1—Ag1iii2.3749 (18)C15—H150.9500
N1—H1A0.8600C16—C171.387 (3)
N1—H1B0.8600C16—H160.9500
C1—C61.391 (3)C17—C181.391 (3)
C1—C21.397 (3)C17—H170.9500
C2—C31.391 (3)C18—H180.9500
C2—H20.9500C19—C241.390 (3)
C3—C41.380 (4)C19—C201.393 (3)
C3—H30.9500C20—C211.390 (3)
C4—C51.385 (3)C20—H200.9500
C4—H40.9500C21—C221.394 (3)
C5—C61.391 (3)C21—H210.9500
C5—H50.9500C22—C231.392 (3)
C6—H60.9500C23—C241.384 (3)
C7—C81.391 (3)C23—H230.9500
C7—C121.398 (3)C24—H240.9500
C8—C91.395 (3)
P1—Ag1—O1131.56 (4)C9—C8—H8119.9
P1—Ag1—O1i124.03 (4)C10—C9—C8120.1 (2)
P1—Ag1—N1ii132.96 (5)C10—C9—H9119.9
O1—Ag1—O1i80.21 (5)C8—C9—H9119.9
O1—Ag1—N1ii78.12 (6)C9—C10—C11119.9 (2)
O1i—Ag1—N1ii92.43 (6)C9—C10—H10120.1
O2—S1—O3114.68 (10)C11—C10—H10120.1
O2—S1—O1111.23 (9)C12—C11—C10120.2 (2)
O3—S1—O1111.38 (9)C12—C11—H11119.9
O2—S1—C19106.66 (9)C10—C11—H11119.9
O3—S1—C19105.65 (10)C11—C12—C7120.1 (2)
O1—S1—C19106.65 (9)C11—C12—H12120.0
C13—P1—C7103.46 (10)C7—C12—H12120.0
C13—P1—C1103.10 (10)C14—C13—C18119.0 (2)
C7—P1—C1104.85 (10)C14—C13—P1118.77 (17)
C13—P1—Ag1114.78 (7)C18—C13—P1122.22 (16)
C7—P1—Ag1113.23 (7)C15—C14—C13120.6 (2)
C1—P1—Ag1115.99 (7)C15—C14—H14119.7
S1—O1—Ag1126.03 (9)C13—C14—H14119.7
S1—O1—Ag1i108.65 (8)C14—C15—C16120.0 (2)
Ag1—O1—Ag1i99.79 (5)C14—C15—H15120.0
C22—N1—Ag1iii108.76 (13)C16—C15—H15120.0
C22—N1—H1A109.9C17—C16—C15120.1 (2)
Ag1iii—N1—H1A109.9C17—C16—H16119.9
C22—N1—H1B109.9C15—C16—H16119.9
Ag1iii—N1—H1B109.9C16—C17—C18119.9 (2)
H1A—N1—H1B108.3C16—C17—H17120.1
C6—C1—C2119.4 (2)C18—C17—H17120.1
C6—C1—P1122.24 (17)C17—C18—C13120.4 (2)
C2—C1—P1118.36 (18)C17—C18—H18119.8
C3—C2—C1119.3 (2)C13—C18—H18119.8
C3—C2—H2120.4C24—C19—C20119.86 (19)
C1—C2—H2120.4C24—C19—S1119.90 (16)
C4—C3—C2121.3 (2)C20—C19—S1120.19 (16)
C4—C3—H3119.3C19—C20—C21120.20 (19)
C2—C3—H3119.3C19—C20—H20119.9
C3—C4—C5119.3 (2)C21—C20—H20119.9
C3—C4—H4120.3C20—C21—C22119.88 (19)
C5—C4—H4120.3C20—C21—H21120.1
C4—C5—C6120.1 (2)C22—C21—H21120.1
C4—C5—H5119.9C23—C22—C21119.58 (19)
C6—C5—H5119.9C23—C22—N1118.87 (19)
C1—C6—C5120.5 (2)C21—C22—N1121.33 (19)
C1—C6—H6119.7C24—C23—C22120.57 (19)
C5—C6—H6119.7C24—C23—H23119.7
C8—C7—C12119.5 (2)C22—C23—H23119.7
C8—C7—P1122.84 (17)C23—C24—C19119.91 (19)
C12—C7—P1117.63 (16)C23—C24—H24120.0
C7—C8—C9120.3 (2)C19—C24—H24120.0
C7—C8—H8119.9
N1ii—Ag1—P1—C1361.30 (10)C12—C7—C8—C9−0.9 (3)
O1—Ag1—P1—C13−55.43 (10)P1—C7—C8—C9176.62 (18)
O1i—Ag1—P1—C13−164.36 (9)C7—C8—C9—C10−0.2 (4)
N1ii—Ag1—P1—C7179.81 (10)C8—C9—C10—C110.9 (4)
O1—Ag1—P1—C763.08 (9)C9—C10—C11—C12−0.5 (4)
O1i—Ag1—P1—C7−45.86 (9)C10—C11—C12—C7−0.6 (3)
N1ii—Ag1—P1—C1−58.88 (10)C8—C7—C12—C111.3 (3)
O1—Ag1—P1—C1−175.61 (9)P1—C7—C12—C11−176.36 (17)
O1i—Ag1—P1—C175.45 (9)C7—P1—C13—C14−167.37 (17)
O2—S1—O1—Ag1179.26 (10)C1—P1—C13—C1483.59 (18)
O3—S1—O1—Ag1−51.46 (13)Ag1—P1—C13—C14−43.50 (19)
C19—S1—O1—Ag163.33 (13)C7—P1—C13—C1815.24 (19)
O2—S1—O1—Ag1i−62.88 (11)C1—P1—C13—C18−93.81 (18)
O3—S1—O1—Ag1i66.41 (10)Ag1—P1—C13—C18139.11 (15)
C19—S1—O1—Ag1i−178.80 (8)C18—C13—C14—C152.2 (3)
P1—Ag1—O1—S1−5.52 (14)P1—C13—C14—C15−175.26 (18)
N1ii—Ag1—O1—S1−143.61 (12)C13—C14—C15—C16−1.4 (4)
O1i—Ag1—O1—S1121.79 (13)C14—C15—C16—C17−0.1 (4)
P1—Ag1—O1—Ag1i−127.30 (4)C15—C16—C17—C180.8 (3)
N1ii—Ag1—O1—Ag1i94.60 (6)C16—C17—C18—C130.1 (3)
O1i—Ag1—O1—Ag1i0.0C14—C13—C18—C17−1.6 (3)
C13—P1—C1—C610.1 (2)P1—C13—C18—C17175.83 (16)
C7—P1—C1—C6−97.93 (19)O2—S1—C19—C24135.67 (17)
Ag1—P1—C1—C6136.39 (16)O3—S1—C19—C2413.22 (19)
C13—P1—C1—C2−169.57 (18)O1—S1—C19—C24−105.38 (18)
C7—P1—C1—C282.43 (19)O2—S1—C19—C20−41.5 (2)
Ag1—P1—C1—C2−43.2 (2)O3—S1—C19—C20−163.96 (17)
C6—C1—C2—C30.9 (4)O1—S1—C19—C2077.43 (18)
P1—C1—C2—C3−179.43 (19)C24—C19—C20—C21−0.4 (3)
C1—C2—C3—C4−1.6 (4)S1—C19—C20—C21176.75 (16)
C2—C3—C4—C51.1 (4)C19—C20—C21—C22−0.1 (3)
C3—C4—C5—C60.1 (3)C20—C21—C22—C230.6 (3)
C2—C1—C6—C50.2 (3)C20—C21—C22—N1−174.11 (19)
P1—C1—C6—C5−179.41 (17)Ag1iii—N1—C22—C23−80.1 (2)
C4—C5—C6—C1−0.8 (3)Ag1iii—N1—C22—C2194.6 (2)
C13—P1—C7—C8−91.2 (2)C21—C22—C23—C24−0.5 (3)
C1—P1—C7—C816.6 (2)N1—C22—C23—C24174.28 (19)
Ag1—P1—C7—C8143.97 (17)C22—C23—C24—C190.0 (3)
C13—P1—C7—C1286.45 (18)C20—C19—C24—C230.5 (3)
C1—P1—C7—C12−165.81 (17)S1—C19—C24—C23−176.71 (17)
Ag1—P1—C7—C12−38.43 (19)

Symmetry codes: (i) −x+3/2, −y+3/2, −z+1; (ii) −x+3/2, y−1/2, −z+3/2; (iii) −x+3/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2190).

References

  • Banu, A. & Golzar Hossain, G. M. (2006). Acta Cryst. E62, o2252–o2253.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Brodersen, K. & Beck, R. (2004). Z. Anorg. Allg. Chem.553, 35–49.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cai, J. (2004). Coord. Chem. Rev.248, 1061–1083.
  • Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst.36, 1283–1284.
  • Hanna, J. V. & Ng, S. W. (1999). Acta Cryst. C55 IUC9900031.
  • Léon, A. P. (1945). Rev. Inst. Salubridad Enfermedades Trop. (Mex.), 6, 123–130. [PubMed]
  • Léon, A. (1992). 50 Años De Investigación en México (Fifty Years of Research in Mexico), 782 pp. Centro de Documentación Institucional, História Natural das Doenças México, Mexico.
  • Li, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Jia, H.-Q. & Hu, N.-H. (2006). Cryst. Growth Des.6, 209–215.
  • Liu, H.-Y., Ma, J.-C. & Yang, J. (2007). Acta Cryst. E63, m2707.
  • Liu, H.-Y., Wu, H., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2007). Inorg. Chem.46, 7299–7311. [PubMed]
  • Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o209–o211. [PubMed]
  • Ng, S. W. & Othman, A. H. (1997). Acta Cryst. C53, 1396–1400.
  • Ou, G.-C., Zhang, M., Yuan, X.-Y. & Dai, Y.-Q. (2008). Acta Cryst. E64, m1587. [PMC free article] [PubMed]
  • Pan, Y.-J., Meng, F.-J., Wang, X.-J., Zhu, H.-L. & Wang, D.-Q. (2003). Z. Kristallogr. New Cryst. Struct.218, 253–254.
  • Rae, A. I. M. & Maslen, E. N. (1962). Acta Cryst.15, 1285–1291.
  • Schreuer, J. (1999). Z. Kristallogr. New Cryst. Struct.214, 311–312.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
  • Wu, H., Dong, X.-W., Liu, H.-Y., Ma, J.-F., Li, S.-L., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2008). Dalton Trans. pp. 5331–5341. [PubMed]
  • Zheng, S. L., Tong, M.-L., Chen, X.-M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans. pp. 360–364.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography