PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m769–m770.
Published online 2010 June 16. doi:  10.1107/S1600536810021148
PMCID: PMC3006885

Dicylopenta­dien­yl[4-(4-vinyl­benz­yloxy)pyridine-2,6-dicarboxyl­ato]titanium(IV) monohydrate

Abstract

The title compound, [Ti(C5H5)2(C16H11NO5)]·H2O, exhibits a titanocene unit coordinated to a styrene-substituted pyridine-2,6-dicarboxyl­ate ligand synthesized for use as a monomer for polymerization or copolymerization yielding metallocene-containing polymers. The compound crystallized as a monohydrate and the solvent water mol­ecule forms strong O—H(...)O hydrogen bonds with the carboxyl­ate O atoms of the Ti complex, which play an important role in the connection of adjacent mol­ecules. In addition, weak inter­molecular C—H(...)O hydrogen bonds also contribute to the crystal packing arrangement.

Related literature

For applications of metallocene-based polymers, see: Caldwell et al. (2000 [triangle]); Peckham et al. (2001 [triangle]). For a similar structure, see: Dalir Kheirollahi et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m769-scheme1.jpg

Experimental

Crystal data

  • [Ti(C5H5)2(C16H11NO5)]·H2O
  • M r = 493.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m769-efi1.jpg
  • a = 7.1696 (7) Å
  • b = 13.7884 (13) Å
  • c = 22.419 (2) Å
  • β = 97.460 (1)°
  • V = 2197.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.44 mm−1
  • T = 153 K
  • 0.32 × 0.28 × 0.23 mm

Data collection

  • Bruker APEXII CCD detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.873, T max = 0.907
  • 13494 measured reflections
  • 5269 independent reflections
  • 3775 reflections with I > 2σ(I)
  • R int = 0.098

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.127
  • S = 1.03
  • 5269 reflections
  • 315 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and Mercury (Macrae et al., 2006 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021148/zl2275sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021148/zl2275Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China–NSAF (grant No. 10676012) for financial support.

supplementary crystallographic information

Comment

Metallocene-based polymers have attracted considerable attention and research interest in the areas of catalysts, photosensitizers, heat resisting materials, anticancer medicines and optical materials because of their excellent properties such as a high dielectric constant, high thermal stability and special rheological (Caldwell et al., 2000; Peckham et al., 2001). A number of pyridinecarboxylic acid titanocene-containing complexes have been synthesized (Dalir Kheirollahi et al., 2005).

In the current contribution we would like to report the crystal structure of the title titanocene-containing complex, which also features a styrene functionality and might thus be polymerized or co-polymerized to yield metallocene-containing polymers. The compound crystallized as a monohydrate and the solvate water molecule forms strong O—H···O hydrogen bonds with the carboxylate O atoms of the Ti complex that play an important role in the connection of adjacent molecules (Figure 2). The water molecules are hydrogen bonded towards two symmetry dependent uncoordinated carboxylate oxygen atoms (O2) in neighboring molecules, with two water molecules bridging between two carboxylate O atoms so as to form a quadrilateral ring, thus connecting the complexes into hydrogen bonded dimers (Table 1, Figure 2). In addition, weak intermolecular C—H···O hydrogen bonds also contribute to the crystal packing arrangement (Table 1).

Experimental

A solution of 4-(4-vinylbenzyloxy)pyridine-2,6-dicarboxylic acid (0.594 g, 2 mmol) and sodium carbonate (0.212 g, 2 mmol) in 20 ml water was added to a solution of bis(cyclopentadienyl) titanium dichloride (0.498 g, 2 mmol) in 30 ml water at 298 K. Then the mixture was stirred at 298 K for 10 min. After the reaction was completed, the solution was extracted with CHCl3 several times. The combined CHCl3 layers were dried over anhydrous Na2SO4. The product was obtained in 94.8% yield as a yellow powder after solvent removal under vacuum. The single crystals suitable for X-ray diffraction were obtained at ambient temperature by slow evaporation of a dichloromethane/hexane solution (5/1, v/v) over a period of several days. 1H NMR (500 MHz, CDCl3) δ (ppm): 7.73 (s, 2H), 7.47 (d 2H), 7.39 (d, 2H), 6.73 (q, 2H), 6.18 (s, 10H), 5.78 (d, 1H), 5.32 (s, 2H), 5.29 (d, 1H). IR (cm-1): 1652 (C=O), 1447 (Py), 993 (C=C), 825 (Cp). Elemental analysis calculated(%): C, 65.68; H, 4.42; N, 2.95. Found(%): C, 65.61; H, 4.49; N, 3.01.

Refinement

Carbon bound H atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.95, 0.99 and 1.00 Å, and with Uiso(H) = 1.2 Ueq(C). The water H-atoms were located in a difference Fourier map and were refined isotropically.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
The packing in the title compound as viewed down the a-axis. Dashed lines indicate H-bonds but H atoms are omitted for clarity

Crystal data

[Ti(C5H5)2(C16H11NO5)]·H2OF(000) = 1024
Mr = 493.35Dx = 1.491 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4730 reflections
a = 7.1696 (7) Åθ = 2.4–27.3°
b = 13.7884 (13) ŵ = 0.44 mm1
c = 22.419 (2) ÅT = 153 K
β = 97.460 (1)°Block, colourless
V = 2197.6 (4) Å30.32 × 0.28 × 0.23 mm
Z = 4

Data collection

Bruker APEXII CCD detector diffractometer5269 independent reflections
Radiation source: sealed tube3775 reflections with I > 2σ(I)
graphiteRint = 0.098
[var phi] and ω scansθmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −9→9
Tmin = 0.873, Tmax = 0.907k = −18→18
13494 measured reflectionsl = −29→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0558P)2] where P = (Fo2 + 2Fc2)/3
5269 reflections(Δ/σ)max = 0.001
315 parametersΔρmax = 0.46 e Å3
2 restraintsΔρmin = −0.48 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ti10.69524 (4)0.37174 (2)0.697730 (16)0.03351 (13)
O10.4408 (2)0.37378 (10)0.63473 (7)0.0461 (4)
N10.6958 (2)0.49830 (11)0.63954 (7)0.0314 (3)
O41.1293 (2)0.58056 (11)0.70963 (7)0.0501 (4)
O50.68376 (18)0.73586 (10)0.52883 (6)0.0433 (4)
O30.95114 (17)0.45046 (10)0.72073 (6)0.0388 (3)
C110.8521 (3)0.63889 (14)0.60863 (8)0.0334 (4)
H110.95980.67970.61330.040*
C160.9911 (2)0.53006 (14)0.69565 (9)0.0340 (4)
O20.2441 (2)0.45197 (13)0.56604 (7)0.0581 (5)
C120.8425 (2)0.55837 (13)0.64445 (8)0.0306 (4)
C100.6995 (3)0.65870 (15)0.56549 (9)0.0354 (4)
C60.7905 (3)0.88739 (15)0.49283 (10)0.0405 (5)
C150.3962 (3)0.44286 (16)0.59832 (9)0.0406 (5)
C140.5456 (3)0.59511 (15)0.55972 (9)0.0371 (4)
H140.44050.60640.53010.045*
C130.5488 (2)0.51691 (14)0.59710 (8)0.0338 (4)
C30.7158 (3)1.04503 (17)0.41498 (10)0.0455 (5)
C90.8416 (3)0.80338 (17)0.53390 (10)0.0476 (5)
H9A0.95470.77050.52270.057*
H9B0.87010.82640.57590.057*
C20.6819 (3)1.12760 (19)0.37223 (12)0.0559 (6)
H20.65521.11100.33090.067*
C220.4196 (3)0.39584 (17)0.74867 (11)0.0468 (5)
H220.28630.39580.72890.056*
C230.5186 (3)0.31475 (17)0.77295 (10)0.0484 (5)
H230.46680.24780.77590.058*
C40.7219 (3)1.05683 (18)0.47672 (11)0.0524 (6)
H40.70021.11900.49280.063*
C10.6844 (3)1.2187 (2)0.38448 (14)0.0651 (7)
H1A0.71021.23990.42500.078*
H1B0.66041.26490.35300.078*
C260.5322 (3)0.47828 (17)0.76070 (10)0.0475 (5)
H260.49320.54680.75120.057*
C190.7826 (4)0.20477 (17)0.71147 (13)0.0595 (7)
H190.76230.16330.74660.071*
C70.7802 (3)0.87685 (17)0.43084 (11)0.0514 (6)
H70.79910.81460.41440.062*
C210.9291 (4)0.29268 (19)0.64666 (12)0.0599 (7)
H211.03110.32590.62800.072*
C250.6991 (3)0.44875 (18)0.79528 (10)0.0497 (6)
H250.79990.49280.81480.060*
C80.7433 (3)0.95444 (18)0.39290 (10)0.0539 (6)
H80.73680.94510.35070.065*
C240.6946 (3)0.34904 (18)0.80199 (10)0.0503 (6)
H240.78810.30970.82880.060*
C50.7596 (3)0.97820 (17)0.51504 (10)0.0477 (5)
H50.76420.98720.55720.057*
C200.9456 (3)0.25547 (16)0.70441 (12)0.0551 (6)
H201.06210.25730.73420.066*
C180.6618 (4)0.21283 (18)0.65783 (15)0.0706 (8)
H180.54030.17720.64770.085*
C170.7549 (5)0.26670 (19)0.61727 (13)0.0701 (8)
H170.71000.27680.57360.084*
O60.8910 (3)0.38835 (15)0.50777 (9)0.0714 (6)
H6O11.011 (5)0.400 (3)0.5321 (15)0.117 (12)*
H6O20.864 (6)0.452 (4)0.4802 (18)0.163 (17)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ti10.0321 (2)0.0242 (2)0.0433 (2)−0.00074 (13)0.00121 (14)0.00586 (14)
O10.0431 (8)0.0374 (9)0.0543 (9)−0.0118 (6)−0.0071 (7)0.0121 (7)
N10.0303 (8)0.0267 (8)0.0361 (8)−0.0017 (6)0.0007 (6)0.0031 (7)
O40.0366 (7)0.0377 (9)0.0708 (10)−0.0081 (6)−0.0129 (7)0.0107 (8)
O50.0438 (8)0.0369 (8)0.0470 (8)−0.0072 (6)−0.0028 (6)0.0157 (7)
O30.0323 (7)0.0329 (8)0.0495 (8)0.0001 (6)−0.0016 (6)0.0107 (6)
C110.0328 (9)0.0290 (10)0.0381 (10)−0.0031 (7)0.0038 (8)0.0017 (8)
C160.0310 (9)0.0285 (10)0.0418 (11)0.0037 (8)0.0022 (8)0.0015 (8)
O20.0432 (9)0.0624 (11)0.0622 (10)−0.0167 (7)−0.0184 (7)0.0183 (8)
C120.0296 (9)0.0255 (9)0.0364 (10)0.0011 (7)0.0028 (7)−0.0009 (8)
C100.0393 (10)0.0311 (10)0.0358 (10)−0.0015 (8)0.0050 (8)0.0051 (8)
C60.0356 (10)0.0369 (12)0.0490 (12)−0.0066 (9)0.0049 (9)0.0083 (9)
C150.0382 (11)0.0394 (12)0.0421 (11)−0.0070 (9)−0.0026 (9)0.0011 (9)
C140.0366 (10)0.0359 (11)0.0370 (10)−0.0030 (8)−0.0025 (8)0.0052 (9)
C130.0323 (9)0.0315 (11)0.0361 (10)−0.0031 (8)−0.0008 (8)0.0020 (8)
C30.0358 (11)0.0494 (14)0.0512 (13)−0.0056 (9)0.0046 (9)0.0136 (11)
C90.0428 (11)0.0417 (13)0.0565 (13)−0.0095 (9)0.0001 (10)0.0135 (11)
C20.0525 (13)0.0530 (16)0.0617 (15)−0.0024 (11)0.0058 (11)0.0115 (12)
C220.0347 (11)0.0464 (13)0.0602 (14)0.0028 (9)0.0099 (10)0.0091 (11)
C230.0474 (12)0.0392 (12)0.0614 (14)−0.0036 (10)0.0176 (10)0.0147 (11)
C40.0506 (13)0.0377 (13)0.0711 (16)0.0000 (10)0.0153 (11)−0.0018 (11)
C10.0554 (15)0.0520 (17)0.087 (2)0.0061 (12)0.0068 (13)0.0186 (14)
C260.0511 (13)0.0399 (13)0.0536 (13)0.0071 (10)0.0147 (10)0.0019 (10)
C190.0695 (16)0.0265 (12)0.0847 (19)0.0092 (11)0.0188 (14)0.0112 (12)
C70.0635 (14)0.0387 (13)0.0526 (14)−0.0015 (11)0.0107 (11)−0.0002 (10)
C210.0680 (16)0.0430 (15)0.0737 (18)0.0082 (12)0.0277 (14)−0.0096 (13)
C250.0497 (13)0.0539 (15)0.0467 (13)−0.0078 (11)0.0106 (10)−0.0068 (11)
C80.0642 (15)0.0524 (16)0.0451 (13)−0.0051 (12)0.0071 (11)0.0061 (11)
C240.0451 (12)0.0600 (16)0.0462 (12)0.0070 (11)0.0067 (10)0.0176 (11)
C50.0521 (13)0.0463 (14)0.0459 (12)−0.0030 (10)0.0111 (10)0.0039 (10)
C200.0525 (13)0.0373 (13)0.0761 (17)0.0127 (11)0.0112 (12)0.0029 (12)
C180.0653 (16)0.0295 (13)0.113 (2)−0.0026 (11)−0.0046 (16)−0.0176 (14)
C170.109 (2)0.0436 (15)0.0559 (16)0.0176 (15)0.0047 (15)−0.0135 (12)
O60.0559 (11)0.0731 (14)0.0798 (13)−0.0169 (10)−0.0114 (10)0.0203 (11)

Geometric parameters (Å, °)

Ti1—O32.1365 (13)C9—H9A0.9900
Ti1—O12.1573 (14)C9—H9B0.9900
Ti1—N12.1792 (15)C2—C11.286 (3)
Ti1—C242.359 (2)C2—H20.9500
Ti1—C182.367 (2)C22—C231.397 (3)
Ti1—C232.371 (2)C22—C261.400 (3)
Ti1—C172.395 (3)C22—H221.0000
Ti1—C192.395 (2)C23—C241.423 (3)
Ti1—C202.397 (2)C23—H231.0000
Ti1—C212.410 (2)C4—C51.388 (3)
Ti1—C252.428 (2)C4—H40.9500
Ti1—C222.430 (2)C1—H1A0.9500
O1—C151.268 (2)C1—H1B0.9500
N1—C121.332 (2)C26—C251.399 (3)
N1—C131.349 (2)C26—H261.0000
O4—C161.218 (2)C19—C201.388 (3)
O5—C101.340 (2)C19—C181.392 (4)
O5—C91.458 (2)C19—H191.0000
O3—C161.282 (2)C7—C81.371 (3)
C11—C121.377 (3)C7—H70.9500
C11—C101.390 (3)C21—C171.382 (4)
C11—H110.9500C21—C201.383 (4)
C16—C121.512 (2)C21—H211.0000
O2—C151.235 (2)C25—C241.384 (3)
C10—C141.402 (3)C25—H251.0000
C6—C51.376 (3)C8—H80.9500
C6—C71.390 (3)C24—H241.0000
C6—C91.495 (3)C5—H50.9500
C15—C131.499 (3)C20—H201.0000
C14—C131.364 (3)C18—C171.408 (4)
C14—H140.9500C18—H181.0000
C3—C81.367 (3)C17—H171.0000
C3—C41.389 (3)O6—H6O10.97 (4)
C3—C21.488 (3)O6—H6O21.08 (5)
O3—Ti1—O1141.08 (5)C10—C14—H14120.4
O3—Ti1—N170.70 (5)N1—C13—C14122.19 (17)
O1—Ti1—N170.40 (5)N1—C13—C15111.25 (16)
O3—Ti1—C2486.58 (7)C14—C13—C15126.54 (17)
O1—Ti1—C24122.70 (7)C8—C3—C4118.7 (2)
N1—Ti1—C24134.41 (8)C8—C3—C2119.0 (2)
O3—Ti1—C18127.10 (8)C4—C3—C2122.3 (2)
O1—Ti1—C1874.28 (8)O5—C9—C6108.73 (16)
N1—Ti1—C18121.54 (9)O5—C9—H9A109.9
C24—Ti1—C18103.80 (11)C6—C9—H9A109.9
O3—Ti1—C23121.20 (7)O5—C9—H9B109.9
O1—Ti1—C2389.18 (7)C6—C9—H9B109.9
N1—Ti1—C23137.22 (7)H9A—C9—H9B108.3
C24—Ti1—C2335.03 (8)C1—C2—C3127.9 (3)
C18—Ti1—C2385.68 (10)C1—C2—H2116.1
O3—Ti1—C17104.91 (9)C3—C2—H2116.1
O1—Ti1—C1774.53 (9)C23—C22—C26108.9 (2)
N1—Ti1—C1791.09 (9)C23—C22—Ti170.76 (12)
C24—Ti1—C17133.61 (9)C26—C22—Ti173.61 (12)
C18—Ti1—C1734.39 (10)C23—C22—H22125.5
C23—Ti1—C17119.97 (10)C26—C22—H22125.5
O3—Ti1—C19104.79 (7)Ti1—C22—H22125.5
O1—Ti1—C19106.35 (8)C22—C23—C24106.7 (2)
N1—Ti1—C19145.69 (8)C22—C23—Ti175.45 (13)
C24—Ti1—C1977.24 (9)C24—C23—Ti172.03 (12)
C18—Ti1—C1933.99 (9)C22—C23—H23126.2
C23—Ti1—C1975.21 (9)C24—C23—H23126.2
C17—Ti1—C1956.38 (9)Ti1—C23—H23126.2
O3—Ti1—C2073.27 (7)C5—C4—C3120.3 (2)
O1—Ti1—C20127.76 (8)C5—C4—H4119.9
N1—Ti1—C20120.90 (8)C3—C4—H4119.9
C24—Ti1—C2086.97 (9)C2—C1—H1A120.0
C18—Ti1—C2056.14 (9)C2—C1—H1B120.0
C23—Ti1—C20101.46 (8)H1A—C1—H1B120.0
C17—Ti1—C2055.74 (9)C25—C26—C22107.5 (2)
C19—Ti1—C2033.69 (8)C25—C26—Ti172.89 (13)
O3—Ti1—C2173.49 (8)C22—C26—Ti172.97 (13)
O1—Ti1—C21106.03 (8)C25—C26—H26126.0
N1—Ti1—C2191.28 (8)C22—C26—H26126.0
C24—Ti1—C21120.12 (9)Ti1—C26—H26126.0
C18—Ti1—C2156.25 (10)C20—C19—C18107.4 (2)
C23—Ti1—C21131.06 (9)C20—C19—Ti173.22 (13)
C17—Ti1—C2133.42 (9)C18—C19—Ti171.90 (13)
C19—Ti1—C2155.95 (9)C20—C19—H19126.1
C20—Ti1—C2133.45 (8)C18—C19—H19126.1
O3—Ti1—C2569.60 (7)Ti1—C19—H19126.1
O1—Ti1—C25119.59 (7)C8—C7—C6121.3 (2)
N1—Ti1—C25100.85 (7)C8—C7—H7119.3
C24—Ti1—C2533.57 (8)C6—C7—H7119.3
C18—Ti1—C25137.22 (10)C17—C21—C20108.2 (2)
C23—Ti1—C2556.56 (8)C17—C21—Ti172.68 (15)
C17—Ti1—C25163.88 (9)C20—C21—Ti172.74 (13)
C19—Ti1—C25109.41 (9)C17—C21—H21125.7
C20—Ti1—C25108.38 (9)C20—C21—H21125.7
C21—Ti1—C25134.30 (9)Ti1—C21—H21125.7
O3—Ti1—C22122.84 (7)C24—C25—C26108.6 (2)
O1—Ti1—C2268.64 (7)C24—C25—Ti170.47 (13)
N1—Ti1—C22103.68 (7)C26—C25—Ti173.69 (13)
C24—Ti1—C2256.37 (8)C24—C25—H25125.6
C18—Ti1—C22104.80 (10)C26—C25—H25125.6
C23—Ti1—C2233.79 (7)Ti1—C25—H25125.6
C17—Ti1—C22132.24 (10)C3—C8—C7120.9 (2)
C19—Ti1—C22106.62 (9)C3—C8—H8119.5
C20—Ti1—C22135.25 (8)C7—C8—H8119.5
C21—Ti1—C22160.63 (9)C25—C24—C23108.19 (19)
C25—Ti1—C2255.38 (8)C25—C24—Ti175.96 (13)
C15—O1—Ti1123.54 (12)C23—C24—Ti172.94 (12)
C12—N1—C13118.42 (16)C25—C24—H24125.5
C12—N1—Ti1120.74 (11)C23—C24—H24125.5
C13—N1—Ti1120.83 (12)Ti1—C24—H24125.5
C10—O5—C9117.14 (15)C6—C5—C4121.0 (2)
C16—O3—Ti1124.24 (11)C6—C5—H5119.5
C12—C11—C10118.02 (17)C4—C5—H5119.5
C12—C11—H11121.0C21—C20—C19108.8 (2)
C10—C11—H11121.0C21—C20—Ti173.81 (13)
O4—C16—O3126.64 (17)C19—C20—Ti173.10 (13)
O4—C16—C12121.14 (18)C21—C20—H20125.4
O3—C16—C12112.22 (16)C19—C20—H20125.4
N1—C12—C11123.48 (16)Ti1—C20—H20125.4
N1—C12—C16111.92 (16)C19—C18—C17107.8 (2)
C11—C12—C16124.54 (16)C19—C18—Ti174.11 (14)
O5—C10—C11125.36 (17)C17—C18—Ti173.88 (15)
O5—C10—C14115.93 (16)C19—C18—H18125.7
C11—C10—C14118.70 (18)C17—C18—H18125.7
C5—C6—C7117.8 (2)Ti1—C18—H18125.7
C5—C6—C9121.3 (2)C21—C17—C18107.7 (2)
C7—C6—C9120.8 (2)C21—C17—Ti173.90 (14)
O2—C15—O1125.71 (19)C18—C17—Ti171.73 (15)
O2—C15—C13120.75 (18)C21—C17—H17125.9
O1—C15—C13113.55 (16)C18—C17—H17125.9
C13—C14—C10119.17 (17)Ti1—C17—H17125.9
C13—C14—H14120.4H6O1—O6—H6O2106 (3)
O3—Ti1—O1—C15−7.6 (2)N1—Ti1—C19—C18−59.1 (2)
N1—Ti1—O1—C15−5.47 (16)C24—Ti1—C19—C18140.65 (19)
C24—Ti1—O1—C15125.39 (18)C23—Ti1—C19—C18104.61 (18)
C18—Ti1—O1—C15−138.1 (2)C17—Ti1—C19—C18−38.14 (17)
C23—Ti1—O1—C15136.18 (18)C20—Ti1—C19—C18−115.3 (2)
C17—Ti1—O1—C15−102.33 (19)C21—Ti1—C19—C18−78.64 (18)
C19—Ti1—O1—C15−149.50 (18)C25—Ti1—C19—C18150.40 (17)
C20—Ti1—O1—C15−119.92 (18)C22—Ti1—C19—C1891.96 (18)
C21—Ti1—O1—C15−91.02 (19)C5—C6—C7—C81.0 (3)
C25—Ti1—O1—C1586.12 (19)C9—C6—C7—C8−176.5 (2)
C22—Ti1—O1—C15108.66 (18)O3—Ti1—C21—C17−159.45 (18)
O3—Ti1—N1—C121.13 (13)O1—Ti1—C21—C17−20.07 (18)
O1—Ti1—N1—C12−177.44 (15)N1—Ti1—C21—C17−90.03 (17)
C24—Ti1—N1—C1265.56 (17)C24—Ti1—C21—C17124.66 (17)
C18—Ti1—N1—C12−121.21 (15)C18—Ti1—C21—C1737.87 (16)
C23—Ti1—N1—C12116.57 (15)C23—Ti1—C21—C1783.3 (2)
C17—Ti1—N1—C12−104.30 (16)C19—Ti1—C21—C1779.10 (18)
C19—Ti1—N1—C12−86.97 (19)C20—Ti1—C21—C17116.1 (2)
C20—Ti1—N1—C12−54.46 (17)C25—Ti1—C21—C17163.41 (16)
C21—Ti1—N1—C12−70.87 (15)C22—Ti1—C21—C1750.9 (3)
C25—Ti1—N1—C1264.82 (15)O3—Ti1—C21—C2084.48 (15)
C22—Ti1—N1—C12121.54 (15)O1—Ti1—C21—C20−136.14 (15)
O3—Ti1—N1—C13−179.87 (15)N1—Ti1—C21—C20153.90 (16)
O1—Ti1—N1—C131.56 (14)C24—Ti1—C21—C208.59 (19)
C24—Ti1—N1—C13−115.44 (15)C18—Ti1—C21—C20−78.20 (17)
C18—Ti1—N1—C1357.79 (17)C23—Ti1—C21—C20−32.8 (2)
C23—Ti1—N1—C13−64.42 (18)C17—Ti1—C21—C20−116.1 (2)
C17—Ti1—N1—C1374.70 (16)C19—Ti1—C21—C20−36.97 (15)
C19—Ti1—N1—C1392.04 (19)C25—Ti1—C21—C2047.3 (2)
C20—Ti1—N1—C13124.55 (15)C22—Ti1—C21—C20−65.1 (3)
C21—Ti1—N1—C13108.13 (16)C22—C26—C25—C243.0 (3)
C25—Ti1—N1—C13−116.18 (15)Ti1—C26—C25—C24−62.23 (16)
C22—Ti1—N1—C13−59.46 (16)C22—C26—C25—Ti165.26 (16)
O1—Ti1—O3—C164.2 (2)O3—Ti1—C25—C24−116.45 (14)
N1—Ti1—O3—C162.05 (15)O1—Ti1—C25—C24105.53 (14)
C24—Ti1—O3—C16−137.75 (16)N1—Ti1—C25—C24179.04 (13)
C18—Ti1—O3—C16117.51 (18)C18—Ti1—C25—C246.6 (2)
C23—Ti1—O3—C16−132.14 (16)C23—Ti1—C25—C2438.78 (13)
C17—Ti1—O3—C1687.90 (16)C17—Ti1—C25—C24−43.8 (4)
C19—Ti1—O3—C16146.41 (16)C19—Ti1—C25—C24−17.37 (15)
C20—Ti1—O3—C16134.39 (17)C20—Ti1—C25—C24−53.02 (15)
C21—Ti1—O3—C1699.43 (17)C21—Ti1—C25—C24−78.31 (18)
C25—Ti1—O3—C16−108.02 (17)C22—Ti1—C25—C2479.82 (15)
C22—Ti1—O3—C16−92.09 (16)O3—Ti1—C25—C26126.40 (15)
Ti1—O3—C16—O4175.14 (16)O1—Ti1—C25—C26−11.62 (16)
Ti1—O3—C16—C12−4.3 (2)N1—Ti1—C25—C2661.89 (14)
C13—N1—C12—C110.3 (3)C24—Ti1—C25—C26−117.1 (2)
Ti1—N1—C12—C11179.30 (14)C18—Ti1—C25—C26−110.53 (17)
C13—N1—C12—C16177.54 (16)C23—Ti1—C25—C26−78.36 (14)
Ti1—N1—C12—C16−3.4 (2)C17—Ti1—C25—C26−160.9 (3)
C10—C11—C12—N10.6 (3)C19—Ti1—C25—C26−134.52 (14)
C10—C11—C12—C16−176.32 (17)C20—Ti1—C25—C26−170.17 (14)
O4—C16—C12—N1−174.76 (18)C21—Ti1—C25—C26164.54 (14)
O3—C16—C12—N14.7 (2)C22—Ti1—C25—C26−37.33 (13)
O4—C16—C12—C112.5 (3)C4—C3—C8—C7−1.3 (3)
O3—C16—C12—C11−178.03 (18)C2—C3—C8—C7178.2 (2)
C9—O5—C10—C111.3 (3)C6—C7—C8—C30.1 (4)
C9—O5—C10—C14179.90 (18)C26—C25—C24—C23−2.1 (3)
C12—C11—C10—O5177.28 (19)Ti1—C25—C24—C23−66.39 (16)
C12—C11—C10—C14−1.3 (3)C26—C25—C24—Ti164.30 (16)
Ti1—O1—C15—O2−171.98 (17)C22—C23—C24—C250.3 (3)
Ti1—O1—C15—C137.9 (3)Ti1—C23—C24—C2568.41 (16)
O5—C10—C14—C13−177.60 (19)C22—C23—C24—Ti1−68.08 (16)
C11—C10—C14—C131.1 (3)O3—Ti1—C24—C2557.21 (13)
C12—N1—C13—C14−0.5 (3)O1—Ti1—C24—C25−95.39 (14)
Ti1—N1—C13—C14−179.50 (15)N1—Ti1—C24—C25−1.32 (18)
C12—N1—C13—C15−179.46 (16)C18—Ti1—C24—C25−175.38 (14)
Ti1—N1—C13—C151.5 (2)C23—Ti1—C24—C25−114.42 (19)
C10—C14—C13—N1−0.2 (3)C17—Ti1—C24—C25164.61 (16)
C10—C14—C13—C15178.62 (19)C19—Ti1—C24—C25163.22 (15)
O2—C15—C13—N1174.18 (19)C20—Ti1—C24—C25130.61 (14)
O1—C15—C13—N1−5.7 (3)C21—Ti1—C24—C25125.88 (14)
O2—C15—C13—C14−4.8 (3)C22—Ti1—C24—C25−76.60 (15)
O1—C15—C13—C14175.3 (2)O3—Ti1—C24—C23171.63 (14)
C10—O5—C9—C6−175.81 (18)O1—Ti1—C24—C2319.03 (17)
C5—C6—C9—O5110.4 (2)N1—Ti1—C24—C23113.10 (14)
C7—C6—C9—O5−72.2 (3)C18—Ti1—C24—C23−60.96 (15)
C8—C3—C2—C1−167.4 (3)C17—Ti1—C24—C23−80.97 (18)
C4—C3—C2—C112.1 (4)C19—Ti1—C24—C23−82.37 (15)
O3—Ti1—C22—C23−98.28 (15)C20—Ti1—C24—C23−114.97 (15)
O1—Ti1—C22—C23123.83 (15)C21—Ti1—C24—C23−119.70 (14)
N1—Ti1—C22—C23−173.93 (14)C25—Ti1—C24—C23114.42 (19)
C24—Ti1—C22—C23−39.25 (14)C22—Ti1—C24—C2337.81 (13)
C18—Ti1—C22—C2357.67 (16)C7—C6—C5—C4−0.9 (3)
C17—Ti1—C22—C2381.74 (18)C9—C6—C5—C4176.62 (19)
C19—Ti1—C22—C2322.37 (16)C3—C4—C5—C6−0.3 (3)
C20—Ti1—C22—C231.2 (2)C17—C21—C20—C190.7 (3)
C21—Ti1—C22—C2346.4 (3)Ti1—C21—C20—C1965.25 (17)
C25—Ti1—C22—C23−80.06 (15)C17—C21—C20—Ti1−64.51 (17)
O3—Ti1—C22—C2619.10 (15)C18—C19—C20—C21−1.5 (3)
O1—Ti1—C22—C26−118.78 (14)Ti1—C19—C20—C21−65.71 (17)
N1—Ti1—C22—C26−56.55 (14)C18—C19—C20—Ti164.22 (17)
C24—Ti1—C22—C2678.13 (15)O3—Ti1—C20—C21−85.23 (16)
C18—Ti1—C22—C26175.05 (14)O1—Ti1—C20—C2157.39 (18)
C23—Ti1—C22—C26117.4 (2)N1—Ti1—C20—C21−30.84 (18)
C17—Ti1—C22—C26−160.88 (14)C24—Ti1—C20—C21−172.57 (16)
C19—Ti1—C22—C26139.76 (14)C18—Ti1—C20—C2178.58 (18)
C20—Ti1—C22—C26118.57 (15)C23—Ti1—C20—C21155.36 (16)
C21—Ti1—C22—C26163.8 (2)C17—Ti1—C20—C2136.77 (16)
C25—Ti1—C22—C2637.32 (13)C19—Ti1—C20—C21116.1 (2)
C26—C22—C23—C241.5 (3)C25—Ti1—C20—C21−146.32 (16)
Ti1—C22—C23—C2465.74 (15)C22—Ti1—C20—C21154.69 (15)
C26—C22—C23—Ti1−64.19 (16)O3—Ti1—C20—C19158.72 (17)
O3—Ti1—C23—C22103.60 (14)O1—Ti1—C20—C19−58.66 (19)
O1—Ti1—C23—C22−50.69 (14)N1—Ti1—C20—C19−146.89 (15)
N1—Ti1—C23—C228.7 (2)C24—Ti1—C20—C1971.38 (17)
C24—Ti1—C23—C22113.4 (2)C18—Ti1—C20—C19−37.47 (16)
C18—Ti1—C23—C22−124.99 (16)C23—Ti1—C20—C1939.31 (18)
C17—Ti1—C23—C22−122.25 (16)C17—Ti1—C20—C19−79.28 (19)
C19—Ti1—C23—C22−157.84 (16)C21—Ti1—C20—C19−116.1 (2)
C20—Ti1—C23—C22−179.15 (15)C25—Ti1—C20—C1997.63 (17)
C21—Ti1—C23—C22−161.41 (14)C22—Ti1—C20—C1938.6 (2)
C25—Ti1—C23—C2276.28 (15)C20—C19—C18—C171.7 (3)
O3—Ti1—C23—C24−9.79 (16)Ti1—C19—C18—C1766.75 (18)
O1—Ti1—C23—C24−164.07 (14)C20—C19—C18—Ti1−65.09 (17)
N1—Ti1—C23—C24−104.69 (15)O3—Ti1—C18—C1956.7 (2)
C18—Ti1—C23—C24121.63 (15)O1—Ti1—C18—C19−160.13 (19)
C17—Ti1—C23—C24124.36 (15)N1—Ti1—C18—C19145.42 (15)
C19—Ti1—C23—C2488.78 (15)C24—Ti1—C18—C19−39.55 (18)
C20—Ti1—C23—C2467.47 (15)C23—Ti1—C18—C19−69.77 (17)
C21—Ti1—C23—C2485.21 (17)C17—Ti1—C18—C19114.4 (2)
C25—Ti1—C23—C24−37.11 (13)C20—Ti1—C18—C1937.13 (16)
C22—Ti1—C23—C24−113.4 (2)C21—Ti1—C18—C1977.66 (17)
C8—C3—C4—C51.4 (3)C25—Ti1—C18—C19−43.3 (2)
C2—C3—C4—C5−178.0 (2)C22—Ti1—C18—C19−97.89 (17)
C23—C22—C26—C25−2.8 (3)O3—Ti1—C18—C17−57.7 (2)
Ti1—C22—C26—C25−65.21 (15)O1—Ti1—C18—C1785.44 (17)
C23—C22—C26—Ti162.38 (16)N1—Ti1—C18—C1731.00 (19)
O3—Ti1—C26—C25−48.98 (14)C24—Ti1—C18—C17−153.98 (16)
O1—Ti1—C26—C25169.90 (14)C23—Ti1—C18—C17175.80 (17)
N1—Ti1—C26—C25−119.49 (14)C19—Ti1—C18—C17−114.4 (2)
C24—Ti1—C26—C2536.31 (13)C20—Ti1—C18—C17−77.30 (17)
C18—Ti1—C26—C25107.89 (18)C21—Ti1—C18—C17−36.77 (16)
C23—Ti1—C26—C2578.72 (14)C25—Ti1—C18—C17−157.74 (16)
C17—Ti1—C26—C25163.7 (3)C22—Ti1—C18—C17147.69 (16)
C19—Ti1—C26—C2561.25 (17)C20—C21—C17—C180.3 (3)
C20—Ti1—C26—C2514.9 (2)Ti1—C21—C17—C18−64.25 (18)
C21—Ti1—C26—C25−44.9 (4)C20—C21—C17—Ti164.55 (17)
C22—Ti1—C26—C25115.06 (19)C19—C18—C17—C21−1.2 (3)
O3—Ti1—C26—C22−164.04 (13)Ti1—C18—C17—C2165.69 (18)
O1—Ti1—C26—C2254.84 (13)C19—C18—C17—Ti1−66.91 (17)
N1—Ti1—C26—C22125.45 (13)O3—Ti1—C17—C2120.38 (18)
C24—Ti1—C26—C22−78.75 (14)O1—Ti1—C17—C21159.99 (18)
C18—Ti1—C26—C22−7.2 (2)N1—Ti1—C17—C2190.68 (17)
C23—Ti1—C26—C22−36.34 (13)C24—Ti1—C17—C21−79.3 (2)
C17—Ti1—C26—C2248.7 (3)C18—Ti1—C17—C21−115.4 (2)
C19—Ti1—C26—C22−53.81 (17)C23—Ti1—C17—C21−120.19 (18)
C20—Ti1—C26—C22−100.11 (16)C19—Ti1—C17—C21−77.68 (17)
C21—Ti1—C26—C22−160.0 (3)C20—Ti1—C17—C21−36.81 (15)
C25—Ti1—C26—C22−115.06 (19)C25—Ti1—C17—C21−47.4 (4)
O3—Ti1—C19—C20−21.07 (17)C22—Ti1—C17—C21−159.64 (15)
O1—Ti1—C19—C20135.28 (16)O3—Ti1—C17—C18135.74 (16)
N1—Ti1—C19—C2056.2 (2)O1—Ti1—C17—C18−84.65 (17)
C24—Ti1—C19—C20−104.00 (17)N1—Ti1—C17—C18−153.96 (16)
C18—Ti1—C19—C20115.3 (2)C24—Ti1—C17—C1836.0 (2)
C23—Ti1—C19—C20−140.05 (18)C23—Ti1—C17—C18−4.8 (2)
C17—Ti1—C19—C2077.21 (18)C19—Ti1—C17—C1837.68 (15)
C21—Ti1—C19—C2036.71 (15)C20—Ti1—C17—C1878.55 (17)
C25—Ti1—C19—C20−94.26 (17)C21—Ti1—C17—C18115.4 (2)
C22—Ti1—C19—C20−152.69 (16)C25—Ti1—C17—C1867.9 (4)
O3—Ti1—C19—C18−136.42 (17)C22—Ti1—C17—C18−44.3 (2)
O1—Ti1—C19—C1819.93 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6O1···O2i0.97 (4)1.89 (4)2.833 (2)164 (3)
O6—H6O2···O2ii1.08 (5)1.79 (5)2.847 (3)165 (4)
C9—H9A···O6iii0.992.593.464 (3)148
C14—H14···O6ii0.952.423.303 (3)155
C17—H17···O61.002.593.227 (4)121
C22—H22···O3iv1.002.503.420 (3)152
C23—H23···O4v1.002.443.437 (3)174

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) x−1, y, z; (v) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2275).

References

  • Bruker (2004). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Caldwell, G., Meirim, M. G., Neuse, E. W. & Beloussow, K. (2000). J. Inorg. Organomet. Polym.10, 93–101.
  • Dalir Kheirollahi, P., Aghabozorg, H. & Moghimi, A. (2005). X-Ray Struct. Anal. Online, 21, x153–x154.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Peckham, T., Nguyen, P., Bourke, S. C., Wang, Q., Harrison, D. G., Zoricak, P., Russell, C., Liable-Sands, L. M., Rheingold, A. L., Lough, A. J. & Manners, I. (2001). Organometallics, 20, 3035–3043.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography