PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1558.
Published online 2010 June 5. doi:  10.1107/S1600536810020246
PMCID: PMC3006870

1-(4-Fluoro­phen­yl)thio­urea

Abstract

In the title compound, C7H7FN2S, the aromatic ring plane and the thio­urea unit are twisted with a torsion angle C—C—N—C7 of 44.6 (2)°. In the crystal, N—H(...)S and N—H(...)F inter­molecular hydrogen bonds link the mol­ecules into infinite sheets that are stacked along the c axis.

Related literature

For the biological activity of fluorinated thio­ureas, see: Sun et al. (2006 [triangle]); Saeed et al. (2009 [triangle]); Xu et al. (2003 [triangle]). For the use of fluorinated thio­ureas in organic synthesis, see: Nosova et al. (2006 [triangle], 2007 [triangle]); Lipunova et al. (2008 [triangle]); Berkessel et al. (2006 [triangle]). N′-(2-fluoro­benzo­yl)thio­urea derivatives are suitable substrates for studying intra­molecular hydrogen bonds and Fermi resonance, see: Hritzová & Koščík (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1558-scheme1.jpg

Experimental

Crystal data

  • C7H7FN2S
  • M r = 170.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1558-efi1.jpg
  • a = 9.1384 (8) Å
  • b = 8.4338 (7) Å
  • c = 10.5334 (9) Å
  • β = 109.796 (2)°
  • V = 763.85 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 120 K
  • 0.43 × 0.39 × 0.29 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.857, T max = 0.900
  • 6816 measured reflections
  • 1814 independent reflections
  • 1645 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.097
  • S = 1.05
  • 1814 reflections
  • 101 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020246/pb2028sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020246/pb2028Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge a research grant from the Higher Education Commission of Pakistan under project No. 20-Miscel/R&D/00/3834.

supplementary crystallographic information

Comment

Fluorinated thioureas are an imoprtant class of thioureas. Theser are versatile synthons for various fluorine-containing heterocycles: [1,3]-benzothiazin-4-ones (Nosova et al.,2006, 2007) 1-aryl-2-ethylthio-quinazolin-4-one, thiazolidine and 1H-1,2,4-triazoles (Lipunova et al., 2008). Fluorinated thioureas exhibit a variety of biological activities: potent influenza virus neuraminidase inhibitors (Sun et al., 2006), antimicrobial (Saeed et al., 2009) and insecticidal activities (Xu et al., 2003). Moreover, fluorinated bis-thiourea derivatives are also used as organocatalyst in Morita-Baylis-Hillman reaction (Berkessel et al., 2006) and N-Substituted N'-(2-fluorobenzoyl)thiourea derivatives are suitable substrates for studying Intramolecular Hydrogen Bonds and Fermi Resonance (Hritzová & Koščík 2008). The aromatic ring plane and the thiourea moiety are twisted with a torsion angle C2–C1–N1–C7 of 44.6 (2)°. N(1)–H···S and N(2)–H···F intermolecular hydrogen bonds link molecules to endless 2D sheets that are stacked along the c axis.

Experimental

4-Fluorobenzoylisothiocyante (1 mmol) in acetone was treated with ammonia (1 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was poured into aq HCl and the precipitated product was rerystallized from in methanol to afforded the title compound (78 %) as colourless crystals: Anal. calcd. for C7H7N2O2FS: C, 49.40; H, 4.15; N, 16.46; S, 18.84%; found: C, 49.02; H, 4.17; N, 16.41; S, 18.91%.

Refinement

Hydrogen atoms were clearly identified in difference Fourier syntheses, idealized and refined at calculated positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(C/Neq).

Figures

Fig. 1.
Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Crystal packing viewed along [001] with intermolecular hydrogen bonds indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

Crystal data

C7H7FN2SF(000) = 352
Mr = 170.21Dx = 1.480 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1384 (8) ÅCell parameters from 3596 reflections
b = 8.4338 (7) Åθ = 3.2–28.3°
c = 10.5334 (9) ŵ = 0.37 mm1
β = 109.796 (2)°T = 120 K
V = 763.85 (11) Å3Block, colourless
Z = 40.43 × 0.39 × 0.29 mm

Data collection

Bruker SMART APEX diffractometer1814 independent reflections
Radiation source: sealed tube1645 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −12→12
Tmin = 0.857, Tmax = 0.900k = −10→11
6816 measured reflectionsl = −13→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.097w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3192P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1814 reflectionsΔρmax = 0.44 e Å3
101 parametersΔρmin = −0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.02935 (4)0.53586 (4)0.71645 (4)0.02753 (15)
F10.35073 (11)0.23014 (12)0.98827 (10)0.0374 (3)
N10.84161 (13)0.39046 (13)0.81980 (12)0.0224 (3)
H1A0.88740.30660.80060.027*
N20.85423 (14)0.66261 (14)0.84570 (13)0.0257 (3)
H2B0.78640.65740.88820.031*
H2C0.89200.75500.83320.031*
C10.71613 (14)0.35888 (15)0.86719 (13)0.0195 (3)
C20.57627 (15)0.44244 (16)0.81997 (14)0.0214 (3)
H2A0.56560.52860.75940.026*
C30.45251 (16)0.39984 (17)0.86130 (14)0.0247 (3)
H3A0.35720.45680.83080.030*
C40.47151 (16)0.27309 (18)0.94755 (14)0.0254 (3)
C50.60776 (17)0.18705 (17)0.99488 (14)0.0261 (3)
H5A0.61670.09951.05380.031*
C60.73102 (16)0.23144 (17)0.95434 (14)0.0233 (3)
H6A0.82620.17450.98630.028*
C70.89954 (15)0.53115 (15)0.80043 (14)0.0206 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0258 (2)0.0168 (2)0.0483 (3)−0.00188 (12)0.02351 (17)−0.00191 (14)
F10.0391 (5)0.0376 (5)0.0475 (6)−0.0133 (4)0.0304 (4)−0.0076 (4)
N10.0228 (5)0.0154 (5)0.0330 (6)0.0021 (4)0.0145 (5)0.0018 (4)
N20.0267 (6)0.0174 (6)0.0386 (7)−0.0017 (4)0.0184 (5)−0.0025 (5)
C10.0198 (6)0.0188 (6)0.0207 (6)−0.0022 (5)0.0080 (5)−0.0014 (5)
C20.0233 (6)0.0190 (6)0.0222 (6)0.0008 (5)0.0080 (5)0.0007 (5)
C30.0218 (6)0.0250 (7)0.0284 (7)−0.0005 (5)0.0101 (5)−0.0055 (5)
C40.0272 (7)0.0276 (7)0.0262 (7)−0.0106 (5)0.0154 (5)−0.0091 (5)
C50.0353 (7)0.0230 (7)0.0207 (6)−0.0069 (6)0.0103 (6)0.0000 (5)
C60.0250 (6)0.0201 (6)0.0235 (6)−0.0010 (5)0.0066 (5)0.0013 (5)
C70.0164 (6)0.0189 (6)0.0261 (7)0.0003 (4)0.0066 (5)0.0014 (5)

Geometric parameters (Å, °)

S1—C71.7035 (14)C1—C21.3954 (18)
F1—C41.3616 (15)C2—C31.3897 (19)
N1—C71.3427 (17)C2—H2A0.9500
N1—C11.4222 (15)C3—C41.375 (2)
N1—H1A0.8800C3—H3A0.9500
N2—C71.3274 (17)C4—C51.380 (2)
N2—H2B0.8800C5—C61.3846 (19)
N2—H2C0.8800C5—H5A0.9500
C1—C61.3899 (19)C6—H6A0.9500
C7—N1—C1128.69 (11)C2—C3—H3A120.9
C7—N1—H1A115.7F1—C4—C3118.71 (13)
C1—N1—H1A115.7F1—C4—C5118.34 (13)
C7—N2—H2B120.0C3—C4—C5122.95 (13)
C7—N2—H2C120.0C4—C5—C6118.37 (13)
H2B—N2—H2C120.0C4—C5—H5A120.8
C6—C1—C2119.93 (12)C6—C5—H5A120.8
C6—C1—N1117.80 (12)C5—C6—C1120.32 (13)
C2—C1—N1122.03 (12)C5—C6—H6A119.8
C3—C2—C1120.14 (13)C1—C6—H6A119.8
C3—C2—H2A119.9N2—C7—N1119.76 (12)
C1—C2—H2A119.9N2—C7—S1121.59 (10)
C4—C3—C2118.28 (13)N1—C7—S1118.64 (10)
C4—C3—H3A120.9
C7—N1—C1—C6−141.01 (15)F1—C4—C5—C6−179.50 (12)
C7—N1—C1—C244.6 (2)C3—C4—C5—C60.5 (2)
C6—C1—C2—C30.9 (2)C4—C5—C6—C1−0.5 (2)
N1—C1—C2—C3175.14 (12)C2—C1—C6—C5−0.1 (2)
C1—C2—C3—C4−0.9 (2)N1—C1—C6—C5−174.66 (12)
C2—C3—C4—F1−179.79 (12)C1—N1—C7—N210.3 (2)
C2—C3—C4—C50.2 (2)C1—N1—C7—S1−169.25 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.882.433.2841 (12)163
N2—H2B···F1ii0.882.303.0989 (15)152

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2028).

References

  • Berkessel, A., Roland, K. & Neudorfl, J. M. (2006). Org. Lett.8, 4195–4198. [PubMed]
  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hritzová, O. & Koščík, D. (2008). Coll. Czech. Chem. Commun.59, 951–956.
  • Lipunova, G. N., Nosova, E. V., Laeva, A. A., Trashakhova, T. V., Slepukhin, P. A. & Charushin, V. N. (2008). Russ. J. Org. Chem.44, 741–749.
  • Nosova, E. V. G. N., Lipunova, G. N., Laeva, A. A. & Charushin, V. N. (2006). Zh. Org. Khim.42, 1544–1550.
  • Nosova, E. V. G. N., Lipunova, G. N., Laeva, A. A., Sidorova, L. P. & Charushin, V. N. (2007). Zh. Org. Khim.43, 68–76.
  • Saeed, A., Shaheen, U., Hameed, A. & Naqvi, S. Z. H. (2009). J. Fluorine Chem.130, 1028–1034.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhou, P. (2006). Bioorg. Med. Chem. Lett.16, 162–166. [PubMed]
  • Xu, X., Qian, X., Li, Z., Huang, Q. & Chen, G. (2003). J. Fluorine Chem.121, 51–54.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography