PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1849.
Published online 2010 June 26. doi:  10.1107/S1600536810024578
PMCID: PMC3006868

3-Methyl-N-(2-methyl­phen­yl)benzamide

Abstract

The mol­ecular structure of the title compound, C15H15NO, involves an intra­molecular C—H(...)O hydrogen bond. The central amide group –NH—C(=O)– is twisted by 37.95 (12)° out of the meta-substituted benzoyl ring and by 37.88 (12)° out of the ortho-substituted aniline ring. The two benzene rings are inclined to one another at only 4.2 (1)° having an inter­planar spacing of ca 0.90 Å. The crystal structure is stabilized by inter­molecular N—H(...)O hydrogen bonds, which link the mol­ecules into chains running along the b axis. A weak inter­molecular C—H(...)π inter­action is also present.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003 [triangle]). For related structures, see: Bowes et al. (2003 [triangle]); Gowda et al. (2008a [triangle],b [triangle]); Rodrigues et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1849-scheme1.jpg

Experimental

Crystal data

  • C15H15NO
  • M r = 225.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1849-efi1.jpg
  • a = 11.1896 (3) Å
  • b = 4.95027 (14) Å
  • c = 24.1164 (5) Å
  • β = 116.512 (2)°
  • V = 1195.37 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 295 K
  • 0.55 × 0.13 × 0.08 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.954, T max = 0.993
  • 13694 measured reflections
  • 2124 independent reflections
  • 1553 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.126
  • S = 1.02
  • 2124 reflections
  • 156 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810024578/vm2033sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024578/vm2033Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of benzanilides (Bowes et al., 2003; Gowda et al., 2008a,b; Rodrigues et al., 2010), in the present work, the structure of N-(2-methylphenyl)-3-methylbenzamide (I) has been determined (Fig. 1). In the crystal, the ortho-methyl substituent on the anilino ring is positioned syn to the N–H bond, while the meta-methyl substituent on the benzoyl ring is positioned anti to the carbonyl C==O bond.

The structure of (I) involves an intramolecular C–H···O hydrogen bond (Table 1) with the ring atom C13 as a donor and the amido O atom as an acceptor. The two benzene rings are inclined to one another at only 4.2 (1)° with an interplanar spacing of ca0.90 Å. The central amide group –NH–C(=O)- is twisted by 37.95 (12)° out of the meta-substituted benzoyl ring and by 37.88 (12)° of the ortho-substituted anilino ring. The crystal packing (Fig. 2) is dominated by intermolecular N–H···O hydrogen bonds which link the molecules into the chains along [0 1 0]. A weak intermolecular C—H···π(arene) hydrogen bond is also present in the structure, and occurs between the C14 methyl group and the centroid Cg1(i) of the C1—C6 ring at the position (i): x, y - 1, z (Table 1).

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Rod-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All H atoms were visible in difference maps and then treated as riding atoms with C—H = 0.93 or 0.96 Å, N—H = 0.86 Å and O—H = 0.90 Å. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5Ueq(C methyl, O). The U values of the bonded atoms C7 and O1 have been subject (using the DELU instruction) to a rigid bond restraint, thus enforcing their anisotropic displacement components in the direction of the bond to be equal within a standard deviation of 0.005.

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme and intramolecular C—H···O hydrogen bond (dashed line). Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres ...
Fig. 2.
Part of the crystal structure of (I) showing the formation of a chain along [0 1 0] generated by N–H···O hydrogen bond. Another interaction within a chain is a weak C—H···π (arene) ...

Crystal data

C15H15NOF(000) = 480
Mr = 225.28Dx = 1.252 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6151 reflections
a = 11.1896 (3) Åθ = 3.4–29.4°
b = 4.95027 (14) ŵ = 0.08 mm1
c = 24.1164 (5) ÅT = 295 K
β = 116.512 (2)°Rod, colorless
V = 1195.37 (5) Å30.55 × 0.13 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Gemini R CCD diffractometer2124 independent reflections
graphite1553 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.036
ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)h = −13→13
Tmin = 0.954, Tmax = 0.993k = −5→5
13694 measured reflectionsl = −28→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.085P)2] where P = (Fo2 + 2Fc2)/3
2124 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.60977 (14)0.5878 (3)0.45102 (7)0.0380 (4)
C20.62846 (15)0.3929 (3)0.41406 (7)0.0400 (4)
H20.71270.31690.42690.048*
C30.52474 (15)0.3091 (3)0.35868 (7)0.0421 (4)
C40.40013 (16)0.4216 (3)0.34128 (8)0.0485 (4)
H40.32880.36590.30460.058*
C50.37946 (16)0.6155 (3)0.37739 (8)0.0496 (4)
H50.29470.68840.36490.06*
C60.48384 (15)0.7010 (3)0.43174 (7)0.0445 (4)
H60.47010.83420.45550.053*
C70.72176 (14)0.6863 (3)0.50986 (7)0.0386 (4)
C80.92671 (14)0.5441 (3)0.60094 (7)0.0366 (4)
C91.04382 (15)0.4018 (3)0.61249 (7)0.0398 (4)
C101.15481 (17)0.4475 (3)0.66806 (8)0.0529 (5)
H101.2330.3530.67670.064*
C111.15358 (18)0.6281 (4)0.71109 (8)0.0587 (5)
H111.23020.65580.7480.07*
C121.03848 (18)0.7672 (3)0.69924 (8)0.0543 (5)
H121.03720.890.72820.065*
C130.92508 (16)0.7255 (3)0.64467 (7)0.0453 (4)
H130.84710.81890.6370.054*
C140.54820 (18)0.1002 (3)0.31908 (8)0.0551 (5)
H14A0.63140.13680.3180.083*
H14B0.47670.1070.27780.083*
H14C0.5514−0.07610.33630.083*
C151.04971 (16)0.2057 (3)0.56617 (8)0.0499 (4)
H15A1.01460.28980.52610.075*
H15B0.99750.04870.56410.075*
H15C1.14070.15330.57870.075*
N10.81081 (12)0.4968 (2)0.54447 (6)0.0394 (3)
H1N0.7960.33320.53110.047*
O10.73096 (11)0.92511 (18)0.52470 (5)0.0555 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0434 (9)0.0277 (7)0.0421 (9)0.0000 (6)0.0184 (7)0.0039 (6)
C20.0405 (9)0.0322 (8)0.0451 (9)0.0024 (6)0.0172 (8)0.0041 (6)
C30.0503 (10)0.0331 (8)0.0414 (9)−0.0044 (7)0.0190 (8)0.0033 (7)
C40.0452 (10)0.0472 (9)0.0439 (10)−0.0068 (7)0.0116 (8)0.0023 (7)
C50.0404 (9)0.0523 (10)0.0530 (10)0.0054 (7)0.0180 (8)0.0063 (8)
C60.0477 (10)0.0391 (8)0.0476 (9)0.0036 (7)0.0222 (8)0.0013 (7)
C70.0415 (9)0.0288 (8)0.0462 (9)−0.0012 (6)0.0202 (7)0.0015 (6)
C80.0420 (9)0.0272 (7)0.0388 (8)−0.0049 (6)0.0164 (7)−0.0007 (6)
C90.0437 (9)0.0309 (8)0.0450 (9)−0.0030 (6)0.0199 (8)−0.0003 (6)
C100.0439 (9)0.0513 (10)0.0548 (11)0.0004 (7)0.0141 (8)−0.0028 (8)
C110.0535 (11)0.0618 (11)0.0454 (10)−0.0098 (9)0.0084 (9)−0.0104 (9)
C120.0686 (12)0.0491 (10)0.0450 (10)−0.0097 (8)0.0252 (9)−0.0135 (8)
C130.0505 (10)0.0387 (8)0.0486 (10)−0.0018 (7)0.0237 (8)−0.0057 (7)
C140.0655 (12)0.0476 (10)0.0492 (10)−0.0023 (8)0.0228 (9)−0.0065 (8)
C150.0497 (10)0.0452 (9)0.0545 (10)0.0031 (7)0.0230 (8)−0.0056 (8)
N10.0435 (8)0.0259 (6)0.0423 (7)−0.0005 (5)0.0134 (6)−0.0039 (5)
O10.0611 (8)0.0243 (6)0.0653 (8)0.0002 (5)0.0141 (6)−0.0038 (5)

Geometric parameters (Å, °)

C1—C61.390 (2)C9—C101.380 (2)
C1—C21.391 (2)C9—C151.504 (2)
C1—C71.495 (2)C10—C111.374 (2)
C2—C31.385 (2)C10—H100.93
C2—H20.93C11—C121.373 (2)
C3—C41.381 (2)C11—H110.93
C3—C141.508 (2)C12—C131.376 (2)
C4—C51.383 (2)C12—H120.93
C4—H40.93C13—H130.93
C5—C61.376 (2)C14—H14A0.96
C5—H50.93C14—H14B0.96
C6—H60.93C14—H14C0.96
C7—O11.2262 (16)C15—H15A0.96
C7—N11.3517 (18)C15—H15B0.96
C8—C131.391 (2)C15—H15C0.96
C8—C91.402 (2)N1—H1N0.86
C8—N11.4194 (19)
C6—C1—C2119.03 (14)C11—C10—C9122.13 (16)
C6—C1—C7118.77 (13)C11—C10—H10118.9
C2—C1—C7122.16 (13)C9—C10—H10118.9
C3—C2—C1121.63 (14)C12—C11—C10119.58 (16)
C3—C2—H2119.2C12—C11—H11120.2
C1—C2—H2119.2C10—C11—H11120.2
C4—C3—C2118.03 (14)C11—C12—C13120.16 (15)
C4—C3—C14121.44 (14)C11—C12—H12119.9
C2—C3—C14120.54 (14)C13—C12—H12119.9
C3—C4—C5121.22 (15)C12—C13—C8120.21 (15)
C3—C4—H4119.4C12—C13—H13119.9
C5—C4—H4119.4C8—C13—H13119.9
C6—C5—C4120.25 (15)C3—C14—H14A109.5
C6—C5—H5119.9C3—C14—H14B109.5
C4—C5—H5119.9H14A—C14—H14B109.5
C5—C6—C1119.82 (15)C3—C14—H14C109.5
C5—C6—H6120.1H14A—C14—H14C109.5
C1—C6—H6120.1H14B—C14—H14C109.5
O1—C7—N1123.11 (14)C9—C15—H15A109.5
O1—C7—C1121.14 (13)C9—C15—H15B109.5
N1—C7—C1115.75 (12)H15A—C15—H15B109.5
C13—C8—C9120.07 (14)C9—C15—H15C109.5
C13—C8—N1121.22 (13)H15A—C15—H15C109.5
C9—C8—N1118.71 (13)H15B—C15—H15C109.5
C10—C9—C8117.84 (14)C7—N1—C8125.73 (12)
C10—C9—C15120.56 (14)C7—N1—H1N117.1
C8—C9—C15121.60 (14)C8—N1—H1N117.1
C6—C1—C2—C30.0 (2)N1—C8—C9—C10−179.00 (13)
C7—C1—C2—C3−178.03 (13)C13—C8—C9—C15−179.54 (14)
C1—C2—C3—C4−1.1 (2)N1—C8—C9—C151.1 (2)
C1—C2—C3—C14179.15 (13)C8—C9—C10—C11−0.8 (2)
C2—C3—C4—C51.1 (2)C15—C9—C10—C11179.06 (15)
C14—C3—C4—C5−179.21 (15)C9—C10—C11—C120.6 (3)
C3—C4—C5—C60.2 (2)C10—C11—C12—C130.1 (3)
C4—C5—C6—C1−1.4 (2)C11—C12—C13—C8−0.6 (2)
C2—C1—C6—C51.3 (2)C9—C8—C13—C120.4 (2)
C7—C1—C6—C5179.36 (14)N1—C8—C13—C12179.69 (14)
C6—C1—C7—O1−36.9 (2)O1—C7—N1—C8−1.3 (2)
C2—C1—C7—O1141.04 (15)C1—C7—N1—C8178.10 (13)
C6—C1—C7—N1143.59 (14)C13—C8—N1—C739.2 (2)
C2—C1—C7—N1−38.4 (2)C9—C8—N1—C7−141.47 (15)
C13—C8—C9—C100.4 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.132.9417 (14)157
C13—H13···O10.932.482.908 (2)108
C14—H14c···Cg1i0.962.703.627 (2)161

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2033).

References

  • Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [PubMed]
  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o541. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o770. [PMC free article] [PubMed]
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Rodrigues, V. Z., Tokarčík, M., Gowda, B. T. & Kožíšek, J. (2010). Acta Cryst. E66, o891. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography