PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): i53.
Published online 2010 June 23. doi:  10.1107/S1600536810022543
PMCID: PMC3006867

Sodium samarium tetra­kis­(poly­phosphate), NaSm(PO3)4

Abstract

NaSm(PO3)4 has been prepared by solid state reactions. It belongs to type II of the structural family of M I Ln III(PO3)4 compounds (M I = alkali metal and Ln III = rare earth metal) and is composed of (PO3)n]n polyphosphate chains with a repeating unit of four PO4 tetra­hedra. The chains extend parallel to [100] and share O atoms with irregular SmO8 polyhedra, forming a three-dimensional framework which delimits tunnels occupied by Na+ cations in a distorted octa­hedral environment.

Related literature

The unit cell of NaSm(PO3)4, derived from X-ray powder data, was reported by Ferid et al. (1984 [triangle]). For classification of M I Ln III(PO3)4 structures, see: Palkina et al. (1981 [triangle]); Durif (1995 [triangle]). Structures, properties and applications of other members of this family were discussed by Ettis et al. (2003 [triangle]); Parreu et al. (2007 [triangle]); Zhao et al. (2008 [triangle], 2010 [triangle]); Zhu et al. (2009 [triangle]).

Experimental

Crystal data

  • NaSm(PO3)4
  • M r = 489.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00i53-efi1.jpg
  • a = 7.1924 (13) Å
  • b = 13.091 (2) Å
  • c = 9.8480 (17) Å
  • β = 90.396 (10)°
  • V = 927.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.14 mm−1
  • T = 293 K
  • 0.20 × 0.02 × 0.02 mm

Data collection

  • Rigaku Mercury70 CCD diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.329, T max = 0.870
  • 7036 measured reflections
  • 2111 independent reflections
  • 1868 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.068
  • S = 1.15
  • 2111 reflections
  • 163 parameters
  • Δρmax = 2.38 e Å−3
  • Δρmin = −0.80 e Å−3

Data collection: CrystalClear (Rigaku, 2004 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2004 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022543/wm2360sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022543/wm2360Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B2010–92, 648483).

supplementary crystallographic information

Comment

In recent years, alkali rare earth polyphosphates with general formula MILnIII(PO3)4 (MI = alkali metal, LnIII = rare earth metal) have been studied mainly due to their rich structural chemistry and interesting physical and chemical properties, such as high luminescence efficiency (Durif, 1995). The nomenclature of MILnIII(PO3)4 compounds has been proposed by Palkina et al. (1981) and is generally accepted today. Many compounds of this family have been reported, for example, LiLn(PO3)4 (Ln =Y, Sm, Dy) (Zhao et al., 2008, 2010), KGdP4O12 (Ettis et al., 2003), KNd(PO3)4 (Parreu et al., 2007) and CsEu(PO3)4 (Zhu et al., 2009). For the compound NaSm(PO3)4 only unit-cell parameters have been reported on basis of refined X-ray powder diffraction data (Ferid et al., 1984).

The structure of NaSm(PO3)4 is characterized by a three-dimensional framework built up of irregular SmO8 polyhedra linked with polyphosphate chains via Sm–O–P bridges, as show in Fig. 2. The undulated [(PO3)n]n- chains have a repeating unit of four corner-sharing PO4 tetrahedra and extend parallel to the a-axis. Furthermore, the framework delimits tunnels in which the Na+ ions are located. They are 6-coordinated by O atoms with Na—O distances ranging from 2.386 (5)—2.741 (5) Å in a distorted octahedral arrangement.

Experimental

The finely ground reagents Na2CO3, Sm2O3, and NH4H2PO4 were mixed in a molar ratio of Na: Sm: P = 7: 1: 10, placed in a Pt crucible, and heated at 673 K for 4 h. The mixture was re-ground and heated at 1173 K for 20 h, then cooled to 673 K at a rate of 4 K h-1, and finally quenched to room temperature. A few yellow crystals of the title compound with prismatic shape were obtained.

Refinement

The highest peak in the difference electron density map is located 1.49 Å from atom Sm1 while the deepest hole is 1.98 Å from atom O8.

Figures

Fig. 1.
Asymmetric unit of the structure of NaSm(PO3)4 with the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
View of the crystal structure of NaSm(PO3)4 in a projection down [010].

Crystal data

NaSm(PO3)4F(000) = 916
Mr = 489.22Dx = 3.504 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2180 reflections
a = 7.1924 (13) Åθ = 2.1–27.5°
b = 13.091 (2) ŵ = 7.14 mm1
c = 9.8480 (17) ÅT = 293 K
β = 90.396 (10)°Prism, yellow
V = 927.2 (3) Å30.20 × 0.02 × 0.02 mm
Z = 4

Data collection

Rigaku Mercury70 CCD diffractometer2111 independent reflections
Radiation source: fine-focus sealed tube1868 reflections with I > 2σ(I)
Rigaku Graphite Monochromator DIFFRACTOMETER TYPERint = 0.041
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = −9→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −15→17
Tmin = 0.329, Tmax = 0.870l = −12→12
7036 measured reflections

Refinement

Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.037Secondary atom site location: difference Fourier map
wR(F2) = 0.068w = 1/[σ2(Fo2) + (0.0639P)2] where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2111 reflectionsΔρmax = 2.38 e Å3
163 parametersΔρmin = −0.80 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Na1−0.0002 (4)0.7220 (2)0.5648 (3)0.0210 (6)
Sm10.51300 (4)0.71807 (2)0.47634 (3)0.00716 (10)
P10.2493 (2)0.60065 (11)0.74392 (15)0.0064 (3)
P20.8781 (2)0.61480 (12)0.26404 (15)0.0063 (3)
P30.2690 (2)0.59026 (12)0.19783 (15)0.0065 (3)
P40.6463 (2)0.62775 (12)0.80511 (15)0.0065 (3)
O10.2374 (6)0.6610 (3)0.0824 (4)0.0117 (9)
O20.7180 (5)0.7105 (3)0.8947 (4)0.0099 (9)
O30.2829 (6)0.4784 (3)0.1343 (4)0.0091 (9)
O40.8029 (6)0.6454 (3)0.3976 (4)0.0095 (9)
O50.0936 (6)0.6652 (3)0.7951 (4)0.0103 (9)
O60.0886 (6)0.5804 (3)0.2895 (4)0.0105 (9)
O70.2159 (6)0.4860 (3)0.7898 (4)0.0098 (9)
O80.6799 (6)0.6328 (3)0.6572 (4)0.0100 (9)
O90.8672 (6)0.6896 (3)0.1519 (4)0.0105 (9)
O100.2860 (6)0.6073 (3)0.5963 (4)0.0102 (9)
O110.4284 (6)0.6243 (3)0.8331 (4)0.0082 (9)
O120.4293 (6)0.6102 (3)0.2901 (4)0.0135 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Na10.0172 (14)0.0309 (16)0.0149 (12)0.0063 (13)−0.0028 (11)0.0029 (12)
Sm10.00640 (16)0.00857 (15)0.00651 (15)−0.00002 (13)0.00033 (11)−0.00033 (13)
P10.0049 (7)0.0065 (7)0.0078 (7)−0.0001 (6)−0.0001 (6)−0.0006 (6)
P20.0055 (7)0.0053 (7)0.0082 (7)0.0002 (6)0.0012 (6)0.0002 (6)
P30.0046 (7)0.0064 (7)0.0084 (7)0.0013 (6)0.0000 (6)−0.0001 (6)
P40.0053 (7)0.0059 (7)0.0084 (7)−0.0007 (6)0.0001 (6)−0.0007 (6)
O10.010 (2)0.013 (2)0.012 (2)0.0027 (18)0.0012 (18)0.0029 (18)
O20.005 (2)0.009 (2)0.016 (2)−0.0013 (17)−0.0032 (17)−0.0044 (18)
O30.014 (2)0.005 (2)0.009 (2)0.0016 (17)−0.0019 (17)−0.0014 (17)
O40.007 (2)0.012 (2)0.009 (2)0.0009 (17)0.0012 (17)−0.0007 (17)
O50.005 (2)0.013 (2)0.013 (2)0.0014 (17)0.0020 (17)−0.0007 (18)
O60.008 (2)0.015 (2)0.008 (2)−0.0019 (18)0.0034 (17)0.0022 (18)
O70.014 (2)0.005 (2)0.011 (2)−0.0042 (17)−0.0001 (18)−0.0013 (16)
O80.010 (2)0.013 (2)0.0064 (19)0.0015 (18)0.0028 (17)0.0026 (17)
O90.011 (2)0.008 (2)0.012 (2)0.0023 (17)0.0018 (18)0.0028 (17)
O100.012 (2)0.010 (2)0.009 (2)−0.0015 (18)0.0019 (18)−0.0004 (17)
O110.007 (2)0.010 (2)0.0076 (19)−0.0012 (17)−0.0028 (17)−0.0021 (16)
O120.008 (2)0.015 (2)0.017 (2)−0.0020 (18)−0.0044 (18)−0.0047 (18)

Geometric parameters (Å, °)

Na1—O4i2.386 (5)P2—O6vii1.598 (4)
Na1—O1ii2.438 (5)P3—O11.482 (4)
Na1—O2iii2.468 (5)P3—O121.486 (4)
Na1—O52.475 (5)P3—O61.591 (4)
Na1—O102.565 (5)P3—O31.596 (4)
Na1—O8i2.741 (5)P4—O81.479 (4)
Na1—O9ii3.005 (5)P4—O21.487 (4)
Sm1—O9ii2.362 (4)P4—O111.594 (4)
Sm1—O122.389 (4)P4—O3vi1.595 (4)
Sm1—O82.415 (4)O1—Na1iv2.438 (5)
Sm1—O5iv2.423 (4)O1—Sm1iii2.486 (4)
Sm1—O42.424 (4)O2—Sm1v2.449 (4)
Sm1—O2iii2.449 (4)O2—Na1v2.468 (5)
Sm1—O1v2.486 (4)O3—P4vi1.595 (4)
Sm1—O102.488 (4)O4—Na1vii2.386 (5)
P1—O101.482 (4)O5—Sm1ii2.423 (4)
P1—O51.494 (4)O6—P2i1.598 (4)
P1—O111.584 (4)O7—P2vi1.574 (4)
P1—O71.586 (4)O8—Na1vii2.741 (5)
P2—O91.477 (4)O9—Sm1iv2.362 (4)
P2—O41.481 (4)O9—Na1iv3.005 (5)
P2—O7vi1.574 (4)
O4i—Na1—O1ii81.77 (16)O10—P1—O5115.9 (2)
O4i—Na1—O2iii93.40 (16)O10—P1—O11112.5 (2)
O1ii—Na1—O2iii108.62 (17)O5—P1—O11108.1 (2)
O4i—Na1—O5131.55 (19)O10—P1—O7111.3 (2)
O1ii—Na1—O5109.24 (16)O5—P1—O7108.9 (2)
O2iii—Na1—O5123.97 (17)O11—P1—O798.7 (2)
O4i—Na1—O10108.05 (17)O9—P2—O4117.8 (2)
O1ii—Na1—O10168.60 (18)O9—P2—O7vi106.5 (2)
O2iii—Na1—O1077.17 (15)O4—P2—O7vi111.6 (2)
O5—Na1—O1060.02 (14)O9—P2—O6vii110.5 (2)
O4i—Na1—O8i63.56 (14)O4—P2—O6vii106.8 (2)
O1ii—Na1—O8i65.92 (15)O7vi—P2—O6vii102.8 (2)
O2iii—Na1—O8i156.55 (17)O1—P3—O12118.2 (3)
O5—Na1—O8i78.01 (15)O1—P3—O6111.4 (2)
O10—Na1—O8i112.69 (17)O12—P3—O6107.4 (2)
O4i—Na1—O9ii151.14 (16)O1—P3—O3106.4 (2)
O1ii—Na1—O9ii114.66 (17)O12—P3—O3110.5 (2)
O2iii—Na1—O9ii59.56 (14)O6—P3—O3101.6 (2)
O5—Na1—O9ii67.70 (14)O8—P4—O2119.5 (3)
O10—Na1—O9ii59.17 (13)O8—P4—O11109.8 (2)
O8i—Na1—O9ii143.89 (15)O2—P4—O11104.8 (2)
P1—Na1—O9ii60.64 (10)O8—P4—O3vi110.7 (2)
O9ii—Sm1—O12138.95 (15)O2—P4—O3vi107.7 (2)
O9ii—Sm1—O885.27 (14)O11—P4—O3vi102.9 (2)
O12—Sm1—O8114.50 (15)P3—O1—Sm1iii144.7 (2)
O9ii—Sm1—O5iv109.05 (14)Na1iv—O1—Sm1iii94.05 (16)
O12—Sm1—O5iv82.37 (15)P4—O2—Sm1v140.3 (2)
O8—Sm1—O5iv135.61 (14)P4—O2—Na1v116.4 (2)
O9ii—Sm1—O4145.34 (14)Sm1v—O2—Na1v101.18 (16)
O12—Sm1—O474.63 (14)P4vi—O3—P3132.3 (3)
O8—Sm1—O468.31 (13)P2—O4—Na1vii120.5 (2)
O5iv—Sm1—O478.51 (14)P2—O4—Sm1135.3 (2)
O9ii—Sm1—O2iii69.92 (14)Na1vii—O4—Sm197.01 (16)
O12—Sm1—O2iii76.16 (14)P1—O5—Sm1ii142.1 (2)
O8—Sm1—O2iii147.54 (13)P1—O5—Na193.5 (2)
O5iv—Sm1—O2iii74.25 (14)Sm1ii—O5—Na1114.88 (18)
O4—Sm1—O2iii142.17 (13)P3—O6—P2i131.6 (3)
O9ii—Sm1—O1v69.91 (14)P2vi—O7—P1139.8 (3)
O12—Sm1—O1v149.17 (14)P4—O8—Sm1131.5 (2)
O8—Sm1—O1v70.50 (14)P4—O8—Na1vii119.3 (2)
O5iv—Sm1—O1v75.54 (14)Sm1—O8—Na1vii88.43 (14)
O4—Sm1—O1v80.05 (14)P2—O9—Sm1iv149.9 (3)
O2iii—Sm1—O1v116.94 (14)P2—O9—Na1iv120.7 (2)
O9ii—Sm1—O1069.79 (14)Sm1iv—O9—Na1iv89.30 (14)
O12—Sm1—O1081.81 (14)P1—O10—Sm1128.5 (2)
O8—Sm1—O1072.84 (14)P1—O10—Na190.3 (2)
O5iv—Sm1—O10151.45 (14)Sm1—O10—Na197.49 (15)
O4—Sm1—O10119.46 (14)P1—O11—P4135.0 (3)
O2iii—Sm1—O1078.97 (14)P3—O12—Sm1139.8 (3)
O1v—Sm1—O10126.71 (13)

Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+3/2, z+1/2; (iii) x−1/2, −y+3/2, z−1/2; (iv) x+1/2, −y+3/2, z−1/2; (v) x+1/2, −y+3/2, z+1/2; (vi) −x+1, −y+1, −z+1; (vii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2360).

References

  • Brandenburg, K. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Durif, A. (1995). Crystal Chemistry of Condensed Phosphates New York and London: Plenum Press.
  • Ettis, H., Naili, H. & Mhiri, T. (2003). Cryst. Growth Des.3, 599–602.
  • Ferid, M., Dogguy, M., Kbir-Ariguib, N. & Trabelsi, M. (1984). J. Solid State Chem.53, 149–154.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Palkina, K. K., Chudinova, N. N., Litvin, B. N. & Vinogradova, N. V. (1981). Izv. Akad. Nauk SSSR Neorg. Mater.17, 1501–1503.
  • Parreu, I., Sole, R., Massons, J., Diaz, F. & Aguilo, M. (2007). Cryst. Growth Des.7, 557–563.
  • Rigaku (2004). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhao, D., Li, F., Cheng, W. & Zhang, H. (2010). Acta Cryst. E66, i3. [PMC free article] [PubMed]
  • Zhao, D., Zhang, H., Huang, S. P., Fang, M., Zhang, W. L., Yang, S. L. & Cheng, W. D. (2008). J. Mol. Struct.892, 8–12.
  • Zhu, J., Cheng, W.-D. & Zhang, H. (2009). Acta Cryst. E65, i70. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography