PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1745.
Published online 2010 June 23. doi:  10.1107/S1600536810020222
PMCID: PMC3006864

2-(2,2,2-Trifluoro­eth­yl)isoindoline-1,3-dione

Abstract

In the title compound, C10H6F3NO2, the isoindole ring system is planar, the maximum atomic deviation being 0.012 (2) Å. The C—C bond of the trifluoro­ethyl group is twisted with respect to the isoindole ring by a dihedral angle of 62.58 (17)°. Weak inter­molecular C—H(...)O and C—H(...)F hydrogen bonding is present in the crystal structure.

Related literature

The title compound is a key inter­mediate in the synthesis of organic electro-luminescent materials, see: Han & Kay (2005 [triangle]). For the synthesis, see: Valkonen et al. (2007 [triangle]); Barchin et al. (2002 [triangle]). For a related structure, see: Valkonen et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1745-scheme1.jpg

Experimental

Crystal data

  • C10H6F3NO2
  • M r = 229.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1745-efi1.jpg
  • a = 5.047 (1) Å
  • b = 9.5370 (19) Å
  • c = 19.051 (4) Å
  • β = 95.20 (3)°
  • V = 913.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 113 K
  • 0.26 × 0.18 × 0.14 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.960, T max = 0.978
  • 7732 measured reflections
  • 1608 independent reflections
  • 1009 reflections with I > 2σ(I)
  • R int = 0.083

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.126
  • S = 0.97
  • 1608 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: CrystalStructure (Rigaku, 2005 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020222/sj5001sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020222/sj5001Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Major Research Program of Zhejiang Province (No. 2008 C02007–2) and the Zhejiang Provincial Natural Science Foundation of China (No. Y307128).

supplementary crystallographic information

Comment

The title compound, I, is a key intermediate in the synthesis of organic electro-luminescent materials. The emission of light by organic molecules exposed to an electric field has been widely investigated in both an academic and industrial context. (Han & Kay, 2005).

The molecular structure of the title compound is illustrated in Fig. 1. The isoindole ring system is planar, the maximum atomic deviation being 0.012 (2) Å (for the N1 atom). The C9—C10 bond of the trifluoroethyl group is twisted with respect to the isoindole ring by a dihedral angle of 62.58 (17)°, which is similar to the angle 60.3 (5)° found in the related compound 2-(2-iodoethyl)isoindole-1,3-dione (Valkonen et al. 2007). Weak intermolecular C—H···O and and C—H···F hydrogen bonding is present in the crystal structure, Table 1, Fig. 2.

Experimental

An acetic acid solution of phthalic anhydride (14.8 g, 100 mmol) and 2,2,2-trifluoroethylamine (7.99 ml, 100 mmol) was refluxed overnight, and then filtered. The crude product was recrystallized from ethyl acetate.

Refinement

H atoms were positioned geometrically and refined as riding with C—H = 0.95 or 0.99 Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecule of I showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Crystal packing of I viewed down the a axis with hydrogen bonds drawn as dashed lines.

Crystal data

C10H6F3NO2F(000) = 464
Mr = 229.16Dx = 1.667 Mg m3
Monoclinic, P21/cMelting point: 400 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71075 Å
a = 5.047 (1) ÅCell parameters from 2545 reflections
b = 9.5370 (19) Åθ = 2.1–28.0°
c = 19.051 (4) ŵ = 0.16 mm1
β = 95.20 (3)°T = 113 K
V = 913.2 (3) Å3Prism, colorless
Z = 40.26 × 0.18 × 0.14 mm

Data collection

Rigaku Saturn CCD area-detector diffractometer1608 independent reflections
Radiation source: rotating anode1009 reflections with I > 2σ(I)
multilayerRint = 0.083
ω and [var phi] scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)h = −6→5
Tmin = 0.960, Tmax = 0.978k = −11→11
7732 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.126w = 1/[σ2(Fo2) + (0.0618P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1608 reflectionsΔρmax = 0.43 e Å3
146 parametersΔρmin = −0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.301 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.3850 (3)0.94405 (16)0.09725 (9)0.0441 (5)
F20.7282 (3)1.04965 (15)0.06326 (9)0.0434 (6)
F30.7509 (3)0.94503 (15)0.16352 (8)0.0424 (5)
O11.0018 (3)0.65493 (18)0.17852 (9)0.0311 (5)
O20.2715 (3)0.63673 (19)0.01945 (9)0.0327 (6)
N10.6488 (4)0.6796 (2)0.09384 (11)0.0258 (6)
C10.7960 (5)0.6112 (3)0.14966 (14)0.0259 (7)
C20.6475 (5)0.4813 (3)0.16200 (13)0.0249 (7)
C30.7001 (5)0.3752 (3)0.21083 (14)0.0288 (7)
H30.85080.37920.24450.035*
C40.5253 (5)0.2632 (3)0.20895 (14)0.0306 (7)
H40.55810.18840.24160.037*
C50.3044 (5)0.2576 (3)0.16073 (15)0.0316 (7)
H50.18700.17980.16110.038*
C60.2508 (5)0.3642 (3)0.11158 (14)0.0289 (7)
H60.09920.36090.07820.035*
C70.4270 (5)0.4746 (3)0.11336 (13)0.0258 (7)
C80.4261 (5)0.6019 (3)0.06811 (14)0.0264 (7)
C90.7342 (5)0.8059 (3)0.06062 (14)0.0296 (7)
H9A0.65930.80740.01080.036*
H9B0.93060.80550.06130.036*
C100.6488 (6)0.9351 (3)0.09660 (15)0.0326 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0356 (11)0.0349 (10)0.0619 (13)0.0086 (8)0.0059 (8)−0.0084 (8)
F20.0571 (13)0.0238 (10)0.0492 (12)−0.0014 (8)0.0039 (9)0.0066 (7)
F30.0596 (13)0.0298 (10)0.0362 (11)0.0038 (8)−0.0051 (9)−0.0039 (7)
O10.0285 (12)0.0274 (11)0.0361 (11)0.0003 (9)−0.0034 (9)−0.0039 (8)
O20.0298 (12)0.0350 (12)0.0321 (12)0.0042 (8)−0.0040 (9)0.0001 (9)
N10.0227 (13)0.0211 (12)0.0329 (13)0.0022 (10)−0.0022 (10)0.0009 (10)
C10.0249 (16)0.0237 (15)0.0288 (15)0.0043 (13)0.0003 (12)−0.0047 (11)
C20.0213 (15)0.0247 (15)0.0287 (15)0.0059 (12)0.0015 (12)−0.0037 (11)
C30.0277 (17)0.0281 (16)0.0305 (16)0.0069 (13)0.0012 (12)−0.0020 (12)
C40.0331 (18)0.0248 (16)0.0347 (17)0.0052 (13)0.0081 (13)0.0022 (12)
C50.0283 (17)0.0250 (16)0.0423 (18)0.0009 (13)0.0073 (14)−0.0057 (12)
C60.0261 (17)0.0277 (16)0.0327 (16)0.0018 (13)0.0018 (12)−0.0072 (12)
C70.0245 (16)0.0232 (15)0.0303 (16)0.0038 (12)0.0053 (12)−0.0040 (12)
C80.0230 (16)0.0255 (15)0.0305 (16)0.0057 (12)0.0011 (12)−0.0051 (12)
C90.0302 (16)0.0237 (15)0.0347 (17)0.0021 (13)0.0018 (12)0.0027 (12)
C100.0340 (19)0.0238 (16)0.0389 (18)0.0009 (14)−0.0022 (13)0.0032 (12)

Geometric parameters (Å, °)

F1—C101.335 (3)C3—H30.9500
F2—C101.343 (3)C4—C51.380 (3)
F3—C101.334 (3)C4—H40.9500
O1—C11.205 (3)C5—C61.392 (4)
O2—C81.203 (3)C5—H50.9500
N1—C81.398 (3)C6—C71.376 (3)
N1—C11.402 (3)C6—H60.9500
N1—C91.445 (3)C7—C81.489 (4)
C1—C21.478 (4)C9—C101.492 (4)
C2—C31.384 (3)C9—H9A0.9900
C2—C71.383 (3)C9—H9B0.9900
C3—C41.384 (4)
C8—N1—C1111.9 (2)C5—C6—H6121.4
C8—N1—C9123.4 (2)C6—C7—C2122.0 (2)
C1—N1—C9124.2 (2)C6—C7—C8129.9 (2)
O1—C1—N1124.1 (2)C2—C7—C8108.1 (2)
O1—C1—C2130.3 (2)O2—C8—N1124.6 (2)
N1—C1—C2105.6 (2)O2—C8—C7129.7 (2)
C3—C2—C7120.7 (2)N1—C8—C7105.6 (2)
C3—C2—C1130.6 (2)N1—C9—C10112.2 (2)
C7—C2—C1108.7 (2)N1—C9—H9A109.2
C2—C3—C4117.7 (2)C10—C9—H9A109.2
C2—C3—H3121.2N1—C9—H9B109.2
C4—C3—H3121.2C10—C9—H9B109.2
C5—C4—C3121.4 (2)H9A—C9—H9B107.9
C5—C4—H4119.3F3—C10—F1106.6 (2)
C3—C4—H4119.3F3—C10—F2106.8 (2)
C4—C5—C6121.1 (2)F1—C10—F2107.0 (2)
C4—C5—H5119.5F3—C10—C9113.3 (2)
C6—C5—H5119.5F1—C10—C9112.8 (2)
C7—C6—C5117.1 (2)F2—C10—C9110.1 (2)
C7—C6—H6121.4
C8—N1—C1—O1176.9 (2)C1—C2—C7—C6179.5 (2)
C9—N1—C1—O14.5 (4)C3—C2—C7—C8−179.4 (2)
C8—N1—C1—C2−2.3 (3)C1—C2—C7—C8−0.4 (3)
C9—N1—C1—C2−174.7 (2)C1—N1—C8—O2−178.4 (2)
O1—C1—C2—C31.4 (5)C9—N1—C8—O2−6.0 (4)
N1—C1—C2—C3−179.5 (3)C1—N1—C8—C72.0 (3)
O1—C1—C2—C7−177.6 (3)C9—N1—C8—C7174.5 (2)
N1—C1—C2—C71.6 (3)C6—C7—C8—O2−0.4 (5)
C7—C2—C3—C40.1 (4)C2—C7—C8—O2179.5 (3)
C1—C2—C3—C4−178.7 (3)C6—C7—C8—N1179.1 (3)
C2—C3—C4—C5−0.7 (4)C2—C7—C8—N1−1.0 (3)
C3—C4—C5—C60.7 (4)C8—N1—C9—C10100.0 (3)
C4—C5—C6—C7−0.1 (4)C1—N1—C9—C10−88.4 (3)
C5—C6—C7—C2−0.5 (4)N1—C9—C10—F361.7 (3)
C5—C6—C7—C8179.4 (3)N1—C9—C10—F1−59.5 (3)
C3—C2—C7—C60.5 (4)N1—C9—C10—F2−178.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.523.462 (3)174
C4—H4···O1ii0.952.603.229 (3)124
C9—H9B···O2iii0.992.543.311 (3)135
C3—H3···F3ii0.952.623.556 (3)168
C3—H3···O1ii0.952.663.247 (3)120

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+2, y−1/2, −z+1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5001).

References

  • Barchin, B. M., Cuadro, A. M. & Alvarez-Builla, J. (2002). Synlett, 2, 343–345.
  • Han, K. J. & Kay, K. Y. (2005). J. Korean Chem. Soc.49, 233–238.
  • Rigaku (2005). CrystalClear and CrystalStructure Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Valkonen, A., Lahtinen, T. & Rissanen, K. (2007). Acta Cryst. E63, o472–o473.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography