PMCCPMCCPMCC

Conseils de recherche
Les critères de recherche 

Avancée

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m844.
Published online 2010 June 26. doi:  10.1107/S1600536810022014
PMCID: PMC3006863

Tetra­butyl­ammonium bis­[4,4′-dimethyl-2,2′-(3,7-dimethyl-1H-4,2,1-benzothiaza­siline-1,1-di­yl)dibenzene­thiol­ato]vanadium(III) acetonitrile tetra­solvate

Abstract

In the title compound, [N(C4H9)4][V(C23H21NS3Si)2]·4CH3CN, the VIII atom (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-66-0m844-efi1.jpg) is coordinated by two N,S,S′-tridentate 4,4′-dimethyl-2,2′-(3,7-dimethyl-1H-4,2,1-benzothiaza­siline-1,1-di­yl)dibenzene­thiol­ate ligands in a distorted trans-VN2S4 octa­hedral geometry. The complete cation is generated by crystallographic twofold symmetry, with the V atom lying on the rotation axis. The unusual ligand arose from nucleophilic attack on the coordinated nitrile by the thiol­ate precursor and reduction of nitrile to the imidate.

Related literature

For background to vanadium thiol­ate chemistry, see: Rehder (2008 [triangle]); Crans et al. (2004 [triangle]); Eady (2003 [triangle]); Janas & Sobota (2005 [triangle]); Ye et al. (2010 [triangle]); Tsai et al. (2007 [triangle]). For further mechanistic information, see: Block et al. (1989 [triangle]). For related structures, see: Zhu et al. (1997 [triangle], 2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m844-scheme1.jpg

Experimental

Crystal data

  • (C16H36N)[V(C23H21NS3Si)2]·4C2H3N
  • M r = 1328.97
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m844-efi2.jpg
  • a = 27.0867 (16) Å
  • b = 14.6525 (9) Å
  • c = 22.0590 (13) Å
  • β = 126.359 (1)°
  • V = 7050.5 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 200 K
  • 0.50 × 0.50 × 0.40 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.490, T max = 1.000
  • 26980 measured reflections
  • 8840 independent reflections
  • 5635 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.144
  • S = 1.05
  • 8840 reflections
  • 396 parameters
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022014/hb5425sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022014/hb5425Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Science Council in Taiwan (NSC 96-2113-M- 006-011).

supplementary crystallographic information

Comment

Vanadium thiolate chemistry has been drawing much attention due to its biological relevance as well as its medical application (Rehder, 2008; Crans et al., 2004). For example, alternative nitrogenase is proposed to contain a [Fe7VS9] cofactor, where V site likely binds to three sulfides, His442 and homocitrate (Eady, 2003). To elucidate the role of vanadium in the enzyme, it is essential to understand fundamental chemistry of vanadium, particularly in a S-rich ligation environment (Janas & Sobota, 2005). Thus, we have been exploring the reactions of vanadium ion with thiolato containing ligands (Ye et al., 2010; Tsai et al., 2007). At this work, the reaction of [VCl3THF3] with H3L1 [H3L1 = HSi(5-Me–C6H4-2-SH)3] and three equivalents of nBu-Li in CH3CN generated a deep purple solution. The addition of the cation, [N(C4H9)4]Br, to the reaction mixture yielded a crystalline solid of the title compound (I).

The molecular structure of the anion in (I) is shown in Fig 1. It consists a VIII ion coordinated to two L2 ligands [L2 = Si{CH3(5-Me– C6H4-2-S)CN} (5-Me–C6H4-2-S)2]. L2 ligand has a S2N donor set that contains two benzenethiolates and one thioimidate group. The formation of a thioimidate group in L2 ligand upon the reaction is likely a consequence of nucleophilic attack on the coordinated nitrile by thiolate and reduction of nitrile to the imidate. Similar chemistry was demonstrated in a rhenium complex with thiolate ligands (Block et al ., 1989). The VIII ion lies on the inversion centre and forms a normal octahedral geometry with a S4N2 ligation environment, four S atoms from thiolate groups and two N atoms from thioimidate groups. Two N donor atoms of thioimidate groups are in trans positions.

The bond lengths and bond angles in compound (I) are shown in Table 1. The V—S distances of 2.416 (1) Å and 2.462 (1) Å are close to those of reported six-coordinate VIII thiolate complexes (Ye et al., 2010; Zhu et al., 2002; Zhu et al., 1997).

The packing diagrams of compound (I) are shown in Fig 2. There is no interaction observed between molecules. The methyl groups on the phenyl rings of the ligands probably prevent the occurrence of inter-molecular π-π stacking interactions. The shortest distance between centers of two phenyl rings is 5.181 (2) Å.

Experimental

A THF solution of VCl3(THF)3 (0.094 g, 0.25 mmol) was added to a acetonitrile solution (10 ml) of HSi(5-Me–C6H4-2-SH)3 (0.202 g, 0.51 mmol) and n-BuLi (0.098 g, 1.53 mmol) to generate a deep purple solution. The solution was concentrated and layered with [N(C4H9)4]Br (0.080 g, 0.25 mmol) in acetonitrile solution (5 ml). After one week, deep purple blocks of (I) were obtained.

Refinement

H atoms were generated geometrically, with C—Hmethyl = 0.96 Å; C—Haryl = 0.93 Å; UisoHmethyl = 1.5Ueq(Cmethyl); UisoHaryl = 1.2Ueq(Caryl). In case of the CH3 group, the positional parameters of the hydrogens were constrained by the SHELXL-97 command to the idealized tetrahedral geometry by the command AFIX 137 (Sheldrick, 2008).

Figures

Fig. 1.
The anion in (I) with displacement ellipsoids drawn at the 35 % probability level. Unlabelled atoms are generated by the symmetry operation (1–x, –y, 1–z).
Fig. 2.
The packing diagram of (I): A view of the sheet parallel to the ac plane, H atoms have been omitted for clarity.
Fig. 3.
View of the packing in (I) approximately down the a axis, acetonitrile molecules and H atoms have been omitted for clarity.

Crystal data

(C16H36N)[V(C23H21NS3Si)2]·4C2H3NF(000) = 2824
Mr = 1328.97Dx = 1.252 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5232 reflections
a = 27.0867 (16) Åθ = 2.3–28.1°
b = 14.6525 (9) ŵ = 0.40 mm1
c = 22.0590 (13) ÅT = 200 K
β = 126.359 (1)°Block, deep purple
V = 7050.5 (7) Å30.50 × 0.50 × 0.40 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer8840 independent reflections
Radiation source: fine-focus sealed tube5635 reflections with I > 2σ(I)
graphiteRint = 0.063
[var phi] and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −33→36
Tmin = 0.490, Tmax = 1.000k = −19→19
26980 measured reflectionsl = −28→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0702P)2 + 1.1431P] where P = (Fo2 + 2Fc2)/3
8840 reflections(Δ/σ)max = 0.001
396 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = −0.44 e Å3
0 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
V10.50000.00000.50000.02112 (15)
Si10.47274 (3)0.21699 (5)0.46284 (4)0.02117 (16)
S10.57178 (3)0.05741 (5)0.47806 (4)0.02504 (16)
S20.53127 (3)0.09662 (5)0.60866 (4)0.02710 (16)
S30.32852 (3)0.19171 (5)0.31598 (4)0.03403 (18)
N10.43811 (10)0.10819 (14)0.42448 (12)0.0222 (5)
N20.50000.1548 (2)0.25000.0255 (7)
N30.2424 (3)0.3201 (5)0.3810 (3)0.182 (4)
N40.2660 (2)0.5583 (4)0.1270 (3)0.125 (2)
C110.55730 (12)0.23091 (18)0.51487 (14)0.0237 (5)
C120.58127 (12)0.31516 (19)0.55119 (15)0.0271 (6)
H12A0.55470.35750.54890.033*
C130.64280 (13)0.3384 (2)0.59036 (16)0.0294 (6)
C140.68221 (13)0.2732 (2)0.59387 (16)0.0316 (6)
H14A0.72360.28680.61930.038*
C150.66030 (13)0.1887 (2)0.55997 (16)0.0298 (6)
H15A0.68740.14600.56370.036*
C160.59806 (12)0.16615 (18)0.52012 (14)0.0242 (5)
C170.66594 (14)0.4308 (2)0.62743 (18)0.0395 (7)
H17A0.63560.45950.63040.059*
H17B0.67370.46810.59820.059*
H17C0.70320.42320.67720.059*
C210.45354 (12)0.24289 (18)0.52897 (15)0.0232 (5)
C220.41580 (12)0.31461 (19)0.52041 (16)0.0274 (6)
H22A0.39710.35130.47780.033*
C230.40540 (13)0.3326 (2)0.57407 (17)0.0320 (7)
C240.43478 (14)0.2781 (2)0.63787 (17)0.0346 (7)
H24A0.42940.29020.67500.042*
C250.47203 (14)0.20590 (19)0.64746 (16)0.0308 (6)
H25A0.49080.16990.69050.037*
C260.48153 (13)0.18693 (18)0.59321 (15)0.0253 (6)
C270.36400 (16)0.4096 (2)0.5628 (2)0.0491 (9)
H27A0.36520.41610.60700.074*
H27B0.32280.39660.52020.074*
H27C0.37760.46530.55410.074*
C310.43356 (12)0.29874 (18)0.38172 (15)0.0235 (5)
C320.46213 (13)0.37586 (18)0.37750 (16)0.0276 (6)
H32A0.50370.38470.41530.033*
C330.43175 (14)0.43956 (19)0.31998 (17)0.0322 (6)
C340.36973 (15)0.4254 (2)0.26367 (17)0.0359 (7)
H34A0.34810.46780.22500.043*
C350.33984 (14)0.3497 (2)0.26423 (16)0.0336 (7)
H35A0.29850.34060.22560.040*
C360.37176 (13)0.28682 (19)0.32289 (15)0.0278 (6)
C370.46425 (16)0.5222 (2)0.3187 (2)0.0464 (8)
H37A0.50770.51190.35080.070*
H37B0.45470.57450.33620.070*
H37C0.45100.53290.26820.070*
C410.34431 (13)0.01434 (19)0.34091 (16)0.0304 (6)
H41A0.3674−0.03390.37630.046*
H41B0.3359−0.00110.29330.046*
H41C0.30640.02240.33480.046*
C420.38056 (12)0.10112 (18)0.36956 (15)0.0256 (6)
C510.68030 (15)0.3592 (2)0.43581 (19)0.0455 (8)
H51A0.69210.40680.47200.068*
H51B0.68490.38040.39830.068*
H51C0.70590.30680.46070.068*
C520.61384 (14)0.3336 (2)0.39858 (17)0.0337 (7)
H52A0.60920.31330.43680.040*
H52B0.58830.38710.37450.040*
C530.59212 (15)0.2588 (2)0.34048 (17)0.0363 (7)
H53A0.62350.21220.36020.044*
H53B0.58550.28400.29560.044*
C540.53288 (13)0.21578 (19)0.31999 (15)0.0289 (6)
H54A0.50510.26420.31190.035*
H54B0.54200.17970.36240.035*
C550.31405 (18)0.0422 (3)0.1459 (2)0.0661 (11)
H55A0.28200.01070.14380.099*
H55B0.30030.05740.09580.099*
H55C0.32430.09720.17480.099*
C560.36886 (16)−0.0172 (2)0.18187 (19)0.0450 (8)
H56A0.3578−0.07320.15310.054*
H56B0.3819−0.03320.23200.054*
C570.42201 (15)0.0271 (2)0.18751 (18)0.0384 (7)
H57A0.40690.05780.14050.046*
H57B0.4507−0.01970.19560.046*
C580.45487 (14)0.09565 (19)0.25166 (16)0.0302 (6)
H58A0.42470.13460.24900.036*
H58B0.47660.06300.29910.036*
C610.1622 (2)0.2502 (4)0.2518 (2)0.0830 (15)
H61A0.17210.26210.21730.124*
H61B0.12290.27610.23240.124*
H61C0.16110.18550.25770.124*
C620.2073 (3)0.2900 (4)0.3223 (3)0.106 (2)
C630.18371 (17)0.6328 (3)0.0028 (2)0.0598 (10)
H63A0.17210.68950.01290.090*
H63B0.14870.5934−0.02500.090*
H63C0.19900.6443−0.02610.090*
C640.22959 (19)0.5909 (3)0.0711 (3)0.0625 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
V10.0260 (3)0.0229 (3)0.0141 (3)0.0032 (3)0.0117 (3)0.0016 (2)
Si10.0233 (4)0.0242 (4)0.0162 (3)0.0026 (3)0.0117 (3)0.0012 (3)
S10.0306 (4)0.0265 (3)0.0223 (3)0.0039 (3)0.0181 (3)0.0017 (3)
S20.0351 (4)0.0260 (4)0.0160 (3)0.0032 (3)0.0129 (3)0.0003 (3)
S30.0243 (4)0.0312 (4)0.0345 (4)0.0040 (3)0.0108 (3)0.0033 (3)
N10.0252 (12)0.0269 (12)0.0144 (10)0.0021 (9)0.0116 (10)0.0003 (9)
N20.0369 (19)0.0229 (16)0.0215 (16)0.0000.0198 (15)0.000
N30.119 (5)0.178 (6)0.110 (4)0.088 (4)−0.009 (4)−0.069 (4)
N40.099 (3)0.198 (6)0.102 (4)0.087 (4)0.073 (3)0.093 (4)
C110.0256 (14)0.0292 (14)0.0162 (13)0.0025 (11)0.0124 (11)0.0034 (11)
C120.0289 (15)0.0309 (15)0.0209 (13)0.0012 (11)0.0144 (12)0.0000 (11)
C130.0311 (15)0.0346 (16)0.0215 (14)−0.0039 (12)0.0151 (13)−0.0008 (12)
C140.0260 (15)0.0408 (17)0.0239 (14)−0.0023 (12)0.0126 (13)0.0037 (13)
C150.0288 (15)0.0338 (16)0.0263 (15)0.0077 (12)0.0160 (13)0.0083 (12)
C160.0266 (14)0.0298 (14)0.0160 (13)0.0022 (11)0.0126 (12)0.0041 (11)
C170.0369 (18)0.0411 (18)0.0369 (18)−0.0092 (14)0.0199 (15)−0.0101 (15)
C210.0239 (14)0.0263 (14)0.0209 (13)−0.0046 (10)0.0141 (12)−0.0034 (11)
C220.0271 (14)0.0278 (14)0.0275 (15)−0.0012 (11)0.0162 (13)−0.0039 (12)
C230.0341 (16)0.0327 (16)0.0370 (17)−0.0072 (12)0.0253 (15)−0.0137 (13)
C240.0466 (19)0.0355 (16)0.0354 (17)−0.0084 (13)0.0319 (16)−0.0125 (13)
C250.0436 (17)0.0271 (15)0.0258 (15)−0.0093 (12)0.0229 (14)−0.0054 (12)
C260.0322 (15)0.0238 (14)0.0238 (14)−0.0052 (11)0.0186 (13)−0.0060 (11)
C270.050 (2)0.050 (2)0.056 (2)0.0040 (16)0.036 (2)−0.0153 (18)
C310.0277 (14)0.0261 (14)0.0188 (13)0.0050 (11)0.0149 (12)0.0001 (11)
C320.0318 (15)0.0284 (15)0.0248 (14)0.0047 (11)0.0179 (13)0.0002 (11)
C330.0439 (18)0.0263 (15)0.0272 (15)0.0069 (13)0.0215 (14)0.0028 (12)
C340.0473 (19)0.0285 (16)0.0236 (15)0.0116 (13)0.0164 (15)0.0064 (12)
C350.0324 (16)0.0293 (16)0.0239 (15)0.0079 (12)0.0084 (13)0.0001 (12)
C360.0319 (15)0.0270 (14)0.0232 (14)0.0052 (11)0.0156 (13)0.0004 (11)
C370.052 (2)0.0323 (17)0.051 (2)0.0036 (15)0.0284 (18)0.0137 (16)
C410.0319 (16)0.0314 (16)0.0246 (15)−0.0008 (12)0.0149 (13)−0.0018 (12)
C420.0286 (15)0.0304 (15)0.0192 (13)0.0030 (11)0.0149 (12)−0.0006 (11)
C510.047 (2)0.0407 (19)0.0371 (18)0.0006 (15)0.0188 (17)0.0009 (15)
C520.0411 (18)0.0249 (15)0.0301 (16)−0.0016 (12)0.0184 (15)−0.0026 (12)
C530.0438 (18)0.0357 (17)0.0312 (16)−0.0070 (13)0.0233 (15)−0.0050 (13)
C540.0394 (17)0.0278 (15)0.0221 (14)0.0005 (12)0.0196 (13)−0.0033 (11)
C550.049 (2)0.084 (3)0.060 (3)−0.003 (2)0.030 (2)0.006 (2)
C560.052 (2)0.051 (2)0.0305 (17)−0.0151 (16)0.0235 (17)−0.0018 (15)
C570.053 (2)0.0337 (16)0.0347 (17)−0.0107 (14)0.0294 (17)−0.0064 (14)
C580.0423 (17)0.0268 (14)0.0285 (15)−0.0020 (12)0.0248 (14)0.0015 (12)
C610.064 (3)0.118 (4)0.039 (2)0.026 (3)0.015 (2)−0.011 (3)
C620.080 (4)0.124 (5)0.062 (3)0.056 (3)0.014 (3)−0.027 (3)
C630.049 (2)0.065 (3)0.057 (2)0.0072 (19)0.027 (2)0.011 (2)
C640.058 (3)0.081 (3)0.061 (3)0.027 (2)0.042 (2)0.027 (2)

Geometric parameters (Å, °)

V1—N1i2.188 (2)C31—C321.404 (4)
V1—N12.188 (2)C32—C331.386 (4)
V1—S1i2.4161 (6)C32—H32A0.9300
V1—S12.4161 (6)C33—C341.391 (4)
V1—S22.4617 (7)C33—C371.508 (4)
V1—S2i2.4617 (7)C34—C351.378 (4)
Si1—N11.788 (2)C34—H34A0.9300
Si1—C211.855 (3)C35—C361.395 (4)
Si1—C111.868 (3)C35—H35A0.9300
Si1—C311.874 (3)C37—H37A0.9600
S1—C161.767 (3)C37—H37B0.9600
S2—C261.771 (3)C37—H37C0.9600
S3—C361.768 (3)C41—C421.498 (4)
S3—C421.781 (3)C41—H41A0.9600
N1—C421.292 (3)C41—H41B0.9600
N2—C581.516 (3)C41—H41C0.9600
N2—C58ii1.516 (3)C51—C521.518 (4)
N2—C541.532 (3)C51—H51A0.9600
N2—C54ii1.532 (3)C51—H51B0.9600
N3—C621.148 (6)C51—H51C0.9600
N4—C641.131 (5)C52—C531.515 (4)
C11—C121.404 (4)C52—H52A0.9700
C11—C161.407 (4)C52—H52B0.9700
C12—C131.390 (4)C53—C541.522 (4)
C12—H12A0.9300C53—H53A0.9700
C13—C141.400 (4)C53—H53B0.9700
C13—C171.511 (4)C54—H54A0.9700
C14—C151.386 (4)C54—H54B0.9700
C14—H14A0.9300C55—C561.482 (5)
C15—C161.402 (4)C55—H55A0.9600
C15—H15A0.9300C55—H55B0.9600
C17—H17A0.9600C55—H55C0.9600
C17—H17B0.9600C56—C571.515 (4)
C17—H17C0.9600C56—H56A0.9700
C21—C221.399 (4)C56—H56B0.9700
C21—C261.407 (4)C57—C581.520 (4)
C22—C231.395 (4)C57—H57A0.9700
C22—H22A0.9300C57—H57B0.9700
C23—C241.387 (4)C58—H58A0.9700
C23—C271.504 (4)C58—H58B0.9700
C24—C251.389 (4)C61—C621.413 (7)
C24—H24A0.9300C61—H61A0.9600
C25—C261.393 (4)C61—H61B0.9600
C25—H25A0.9300C61—H61C0.9600
C27—H27A0.9600C63—C641.404 (5)
C27—H27B0.9600C63—H63A0.9600
C27—H27C0.9600C63—H63B0.9600
C31—C361.393 (4)C63—H63C0.9600
N1i—V1—N1180.0C32—C33—C37121.5 (3)
N1i—V1—S1i86.54 (6)C34—C33—C37120.8 (3)
N1—V1—S1i93.46 (6)C35—C34—C33121.1 (3)
N1i—V1—S193.46 (6)C35—C34—H34A119.4
N1—V1—S186.54 (6)C33—C34—H34A119.4
S1i—V1—S1180.0C34—C35—C36119.7 (3)
N1i—V1—S290.53 (6)C34—C35—H35A120.1
N1—V1—S289.47 (6)C36—C35—H35A120.1
S1i—V1—S281.86 (2)C31—C36—C35121.5 (3)
S1—V1—S298.14 (2)C31—C36—S3123.2 (2)
N1i—V1—S2i89.47 (6)C35—C36—S3115.2 (2)
N1—V1—S2i90.53 (6)C33—C37—H37A109.5
S1i—V1—S2i98.14 (2)C33—C37—H37B109.5
S1—V1—S2i81.86 (2)H37A—C37—H37B109.5
S2—V1—S2i180.0C33—C37—H37C109.5
N1—Si1—C21103.98 (11)H37A—C37—H37C109.5
N1—Si1—C11119.77 (11)H37B—C37—H37C109.5
C21—Si1—C11107.92 (12)C42—C41—H41A109.5
N1—Si1—C31106.07 (11)C42—C41—H41B109.5
C21—Si1—C31110.86 (12)H41A—C41—H41B109.5
C11—Si1—C31108.12 (12)C42—C41—H41C109.5
C16—S1—V1109.28 (8)H41A—C41—H41C109.5
C26—S2—V1117.31 (9)H41B—C41—H41C109.5
C36—S3—C42107.89 (13)N1—C42—C41126.0 (2)
C42—N1—Si1121.20 (19)N1—C42—S3127.1 (2)
C42—N1—V1127.58 (18)C41—C42—S3106.85 (19)
Si1—N1—V1109.60 (11)C52—C51—H51A109.5
C58—N2—C58ii110.3 (3)C52—C51—H51B109.5
C58—N2—C54107.73 (15)H51A—C51—H51B109.5
C58ii—N2—C54111.25 (15)C52—C51—H51C109.5
C58—N2—C54ii111.25 (15)H51A—C51—H51C109.5
C58ii—N2—C54ii107.73 (15)H51B—C51—H51C109.5
C54—N2—C54ii108.6 (3)C53—C52—C51112.2 (3)
C12—C11—C16118.1 (2)C53—C52—H52A109.2
C12—C11—Si1115.51 (19)C51—C52—H52A109.2
C16—C11—Si1126.4 (2)C53—C52—H52B109.2
C13—C12—C11123.3 (3)C51—C52—H52B109.2
C13—C12—H12A118.4H52A—C52—H52B107.9
C11—C12—H12A118.4C52—C53—C54111.3 (2)
C12—C13—C14117.4 (3)C52—C53—H53A109.4
C12—C13—C17121.0 (3)C54—C53—H53A109.4
C14—C13—C17121.5 (3)C52—C53—H53B109.4
C15—C14—C13120.8 (3)C54—C53—H53B109.4
C15—C14—H14A119.6H53A—C53—H53B108.0
C13—C14—H14A119.6C53—C54—N2114.9 (2)
C14—C15—C16121.3 (3)C53—C54—H54A108.5
C14—C15—H15A119.3N2—C54—H54A108.5
C16—C15—H15A119.3C53—C54—H54B108.5
C15—C16—C11119.1 (3)N2—C54—H54B108.5
C15—C16—S1120.1 (2)H54A—C54—H54B107.5
C11—C16—S1120.8 (2)C56—C55—H55A109.5
C13—C17—H17A109.5C56—C55—H55B109.5
C13—C17—H17B109.5H55A—C55—H55B109.5
H17A—C17—H17B109.5C56—C55—H55C109.5
C13—C17—H17C109.5H55A—C55—H55C109.5
H17A—C17—H17C109.5H55B—C55—H55C109.5
H17B—C17—H17C109.5C55—C56—C57113.2 (3)
C22—C21—C26119.2 (2)C55—C56—H56A108.9
C22—C21—Si1124.8 (2)C57—C56—H56A108.9
C26—C21—Si1115.95 (19)C55—C56—H56B108.9
C23—C22—C21121.8 (3)C57—C56—H56B108.9
C23—C22—H22A119.1H56A—C56—H56B107.7
C21—C22—H22A119.1C56—C57—C58111.3 (3)
C24—C23—C22118.0 (3)C56—C57—H57A109.4
C24—C23—C27121.5 (3)C58—C57—H57A109.4
C22—C23—C27120.5 (3)C56—C57—H57B109.4
C23—C24—C25121.4 (3)C58—C57—H57B109.4
C23—C24—H24A119.3H57A—C57—H57B108.0
C25—C24—H24A119.3N2—C58—C57113.0 (2)
C24—C25—C26120.6 (3)N2—C58—H58A109.0
C24—C25—H25A119.7C57—C58—H58A109.0
C26—C25—H25A119.7N2—C58—H58B109.0
C25—C26—C21119.0 (2)C57—C58—H58B109.0
C25—C26—S2119.4 (2)H58A—C58—H58B107.8
C21—C26—S2121.55 (19)C62—C61—H61A109.5
C23—C27—H27A109.5C62—C61—H61B109.5
C23—C27—H27B109.5H61A—C61—H61B109.5
H27A—C27—H27B109.5C62—C61—H61C109.5
C23—C27—H27C109.5H61A—C61—H61C109.5
H27A—C27—H27C109.5H61B—C61—H61C109.5
H27B—C27—H27C109.5N3—C62—C61176.4 (9)
C36—C31—C32116.4 (2)C64—C63—H63A109.5
C36—C31—Si1119.8 (2)C64—C63—H63B109.5
C32—C31—Si1123.7 (2)H63A—C63—H63B109.5
C33—C32—C31123.5 (3)C64—C63—H63C109.5
C33—C32—H32A118.3H63A—C63—H63C109.5
C31—C32—H32A118.3H63B—C63—H63C109.5
C32—C33—C34117.7 (3)N4—C64—C63178.3 (5)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5425).

References

  • Block, E., Kang, H., Ofori-Okai, G. & Zubieta, J. (1989). Inorg. Chim. Acta, 156, 27–28.
  • Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Crans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. (2004). Chem. Rev.104, 849–902. [PubMed]
  • Eady, R. R. (2003). Coord. Chem. Rev.237, 23–30.
  • Janas, Z. & Sobota, P. (2005). Coord. Chem. Rev.249, 2144–2155.
  • Rehder, D. (2008). Bioinorganic Vanadium Chemistry New York: John Wiley & Sons.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tsai, Y.-F., Huang, G.-S., Yang, C.-I., Tsai, H.-L., Liu, Y.-H., Kuo, T.-S. & Hsu, H.-F. (2007). Inorg. Chem.46, 10467–10469. [PubMed]
  • Ye, S., Neese, F., Ozarowski, A., Smirnov, D., Krzystek, J., Telser, J., Liao, J.-H., Hung, C.-H., Chu, W.-C., Tsai, Y.-F., Wang, R.-C., Chen, K.-Y. & Hsu, H.-F. (2010). Inorg. Chem.49, 977–988. [PubMed]
  • Zhu, H., Chen, C., Zhang, X., Liu, Q., Liao, D. & Li, L. (2002). Inorg. Chim. Acta, 328, 96–104.
  • Zhu, H.-P., Deng, Y.-H., Huang, X.-Y., Chen, C.-N. & Liu, Q.-T. (1997). Acta Cryst. C53, 692–693.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography