PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m848.
Published online 2010 June 26. doi:  10.1107/S1600536810023810
PMCID: PMC3006857

Bis[N,N-bis­(2-hy­droxy­eth­yl)glycinato]cobalt(II)

Abstract

The asymmetric unit of the title compound, [Co(C6H12NO4)2], contains one half-mol­ecule with the CoII ion situated on an inversion center. Inter­molecular O—H(...)O hydrogen bonds generate a three-dimensional hydrogen-bonding network, which consolidates the crystal packing.

Related literature

For related structures, see: Ammar et al. (2001 [triangle]); Chuklanova et al. (1981 [triangle]); Thakuria & Das (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m848-scheme1.jpg

Experimental

Crystal data

  • [Co(C6H12NO4)2]
  • M r = 383.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m848-efi1.jpg
  • a = 9.932 (2) Å
  • b = 11.388 (2) Å
  • c = 7.4477 (15) Å
  • β = 110.12 (3)°
  • V = 791.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.13 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.18 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.736, T max = 1.000
  • 8129 measured reflections
  • 1819 independent reflections
  • 1357 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.159
  • S = 1.00
  • 1819 reflections
  • 106 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO (Rigaku, 1998 [triangle]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023810/cv2723sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023810/cv2723Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).

supplementary crystallographic information

Comment

As a contribution to a structural study of ML2 complexes, where L = N,N-bis(2-hydroxyethyl)glycinato ligand, and M = Cu (Ammar et al., 2001; Thakuria & Das, 2007) and Ni (Chuklanova et al., 1981), herewith we report the crystal structure of the title compound CoL2 (I).

In (I) (Fig. 1), the Co(II) ions are located on the inversion centers and are coordinated by two L ligands forming an octahedral enviromental geometry with four oxygen and two nitrogen atoms. The bond lengths are: Co1—N1 = 2.172 (3) Å, Co1—O2 = 2.088 (3) Å and Co1—O4 = 2.046 (2) Å. Though ML2 complexes (M = Co, Ni, Cu) have similar structures, there are some differences. The Co and Ni centers are in a regular octahedron coordinated geometry, while the Cu center has an elongated octahedral coordination with two hydroxy atoms in axial positions.

Intermolecular O—H···O hydrogen bonds (Table 1) generate three-dimensional hydrogen-bonding network, which consolidate the crystal packing (Fig. 2).

Experimental

A mixture of Co(II) nitrate (1.0mmol), Dy(III)nitrate (0.5mmol) and N,N-bis(2-hydroxyethyl)glycine, (1 mmol), in 10 ml solvent wITH DMF:MeOH = 1:1 was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 20% based on metal salt.

Refinement

C-bound H atoms were included in calculated positions and treated as riding on their parent atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). Hydroxy H atoms were located on difference Fourier maps, but placed in idealized positions (O—H = 0.85Å) and refined as riding, with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. H atom have been omitted for clarity. Symmetry code: (A) -x+1, -y-1, -z+1.
Fig. 2.
A portion of the crystal packing viewed down the c axis. Dashed lines denote O—H···O hydrogen bonds.

Crystal data

[Co(C6H12NO4)2]F(000) = 402
Mr = 383.26Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.932 (2) ÅCell parameters from 7077 reflections
b = 11.388 (2) Åθ = 3.4–27.6°
c = 7.4477 (15) ŵ = 1.13 mm1
β = 110.12 (3)°T = 293 K
V = 791.0 (3) Å3Block, red
Z = 20.2 × 0.18 × 0.18 mm

Data collection

Rigaku SCXmini diffractometer1819 independent reflections
Radiation source: fine-focus sealed tube1357 reflections with I > 2σ(I)
graphiteRint = 0.072
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −12→12
Tmin = 0.736, Tmax = 1.000k = −14→14
8129 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
1819 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.36 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.50000.50000.0244 (3)
O10.0043 (3)0.3365 (3)0.0259 (4)0.0552 (9)
H11−0.08460.3211−0.00730.066*
O20.5173 (3)0.4447 (3)0.7743 (4)0.0347 (7)
H120.57460.38830.82180.042*
O30.2823 (3)0.7874 (2)0.5700 (4)0.0449 (8)
O40.4555 (3)0.6656 (2)0.5703 (4)0.0333 (6)
N10.2727 (3)0.4762 (2)0.4479 (5)0.0270 (7)
C10.0483 (4)0.3862 (4)0.2103 (6)0.0431 (10)
H1A0.03770.32990.30220.052*
H1B−0.00900.45500.21180.052*
C20.2040 (4)0.4198 (3)0.2589 (5)0.0329 (9)
H2A0.25790.34960.25380.040*
H2B0.21150.47300.16100.040*
C30.2708 (4)0.3967 (4)0.6042 (6)0.0363 (9)
H3A0.29180.31730.57500.044*
H3B0.17580.39700.61370.044*
C40.3792 (4)0.4339 (4)0.7929 (6)0.0401 (10)
H4A0.35100.50860.83170.048*
H4B0.38300.37620.89020.048*
C50.2141 (4)0.5937 (3)0.4614 (6)0.0309 (8)
H5A0.15540.58820.54160.037*
H5B0.15210.61720.33470.037*
C60.3256 (4)0.6887 (3)0.5411 (5)0.0310 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0203 (4)0.0227 (4)0.0279 (4)0.0026 (3)0.0055 (3)−0.0003 (3)
O10.0397 (18)0.066 (2)0.053 (2)−0.0136 (15)0.0076 (15)−0.0177 (16)
O20.0302 (14)0.0401 (16)0.0306 (15)0.0078 (13)0.0065 (11)0.0075 (12)
O30.0249 (15)0.0323 (15)0.068 (2)0.0053 (12)0.0029 (14)−0.0206 (14)
O40.0227 (13)0.0269 (13)0.0468 (17)0.0006 (11)0.0076 (12)−0.0064 (11)
N10.0241 (16)0.0217 (15)0.0329 (17)−0.0002 (12)0.0067 (13)−0.0023 (11)
C10.037 (2)0.047 (2)0.039 (2)−0.013 (2)0.0060 (18)−0.0058 (19)
C20.0244 (19)0.037 (2)0.036 (2)−0.0001 (16)0.0081 (16)−0.0030 (17)
C30.034 (2)0.035 (2)0.041 (2)−0.0042 (18)0.0142 (18)0.0034 (17)
C40.034 (2)0.050 (3)0.036 (2)0.003 (2)0.0119 (18)0.0074 (19)
C50.0216 (18)0.034 (2)0.035 (2)0.0020 (16)0.0072 (15)−0.0028 (16)
C60.0258 (19)0.032 (2)0.031 (2)0.0047 (16)0.0048 (15)−0.0049 (15)

Geometric parameters (Å, °)

Co1—O42.046 (2)N1—C21.483 (5)
Co1—O4i2.046 (2)C1—C21.512 (5)
Co1—O22.088 (3)C1—H1A0.9700
Co1—O2i2.088 (3)C1—H1B0.9700
Co1—N1i2.172 (3)C2—H2A0.9700
Co1—N12.172 (3)C2—H2B0.9700
O1—C11.409 (5)C3—C41.507 (5)
O1—H110.8499C3—H3A0.9700
O2—C41.430 (5)C3—H3B0.9700
O2—H120.8500C4—H4A0.9700
O3—C61.249 (4)C4—H4B0.9700
O4—C61.260 (4)C5—C61.515 (5)
N1—C51.476 (4)C5—H5A0.9700
N1—C31.480 (5)C5—H5B0.9700
O4—Co1—O4i180.0C2—C1—H1B110.4
O4—Co1—O288.86 (11)H1A—C1—H1B108.6
O4i—Co1—O291.14 (11)N1—C2—C1115.8 (3)
O4—Co1—O2i91.14 (11)N1—C2—H2A108.3
O4i—Co1—O2i88.86 (11)C1—C2—H2A108.3
O2—Co1—O2i180.0N1—C2—H2B108.3
O4—Co1—N1i98.17 (10)C1—C2—H2B108.3
O4i—Co1—N1i81.83 (10)H2A—C2—H2B107.4
O2—Co1—N1i97.61 (11)N1—C3—C4111.3 (3)
O2i—Co1—N1i82.39 (11)N1—C3—H3A109.4
O4—Co1—N181.83 (10)C4—C3—H3A109.4
O4i—Co1—N198.17 (10)N1—C3—H3B109.4
O2—Co1—N182.39 (11)C4—C3—H3B109.4
O2i—Co1—N197.61 (11)H3A—C3—H3B108.0
N1i—Co1—N1180.0O2—C4—C3109.6 (3)
C1—O1—H11108.0O2—C4—H4A109.8
C4—O2—Co1111.2 (2)C3—C4—H4A109.8
C4—O2—H12115.0O2—C4—H4B109.8
Co1—O2—H12116.9C3—C4—H4B109.8
C6—O4—Co1116.5 (2)H4A—C4—H4B108.2
C5—N1—C3112.9 (3)N1—C5—C6114.9 (3)
C5—N1—C2113.2 (3)N1—C5—H5A108.5
C3—N1—C2110.9 (3)C6—C5—H5A108.5
C5—N1—Co1106.5 (2)N1—C5—H5B108.5
C3—N1—Co1103.3 (2)C6—C5—H5B108.5
C2—N1—Co1109.5 (2)H5A—C5—H5B107.5
O1—C1—C2106.5 (3)O3—C6—O4123.4 (3)
O1—C1—H1A110.4O3—C6—C5117.5 (3)
C2—C1—H1A110.4O4—C6—C5119.1 (3)
O1—C1—H1B110.4
O4—Co1—O2—C475.2 (3)O4i—Co1—N1—C2−48.4 (2)
O4i—Co1—O2—C4−104.8 (3)O2—Co1—N1—C2−138.4 (2)
O2i—Co1—O2—C4−9(84)O2i—Co1—N1—C241.6 (2)
N1i—Co1—O2—C4173.3 (3)N1i—Co1—N1—C235 (100)
N1—Co1—O2—C4−6.7 (3)C5—N1—C2—C1−67.2 (4)
O4i—Co1—O4—C637 (100)C3—N1—C2—C160.8 (4)
O2—Co1—O4—C6−88.4 (3)Co1—N1—C2—C1174.1 (3)
O2i—Co1—O4—C691.6 (3)O1—C1—C2—N1179.1 (3)
N1i—Co1—O4—C6174.1 (3)C5—N1—C3—C4−70.5 (4)
N1—Co1—O4—C6−5.9 (3)C2—N1—C3—C4161.4 (3)
O4—Co1—N1—C58.9 (2)Co1—N1—C3—C444.2 (3)
O4i—Co1—N1—C5−171.1 (2)Co1—O2—C4—C332.5 (4)
O2—Co1—N1—C598.9 (2)N1—C3—C4—O2−53.5 (4)
O2i—Co1—N1—C5−81.1 (2)C3—N1—C5—C6101.7 (4)
N1i—Co1—N1—C5−88 (100)C2—N1—C5—C6−131.4 (3)
O4—Co1—N1—C3−110.2 (2)Co1—N1—C5—C6−11.0 (4)
O4i—Co1—N1—C369.8 (2)Co1—O4—C6—O3−177.0 (3)
O2—Co1—N1—C3−20.3 (2)Co1—O4—C6—C51.1 (5)
O2i—Co1—N1—C3159.7 (2)N1—C5—C6—O3−174.3 (3)
N1i—Co1—N1—C3153 (100)N1—C5—C6—O47.4 (5)
O4—Co1—N1—C2131.6 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H12···O3ii0.851.792.632 (4)171
O1—H11···O3iii0.851.892.744 (4)178

Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2723).

References

  • Ammar, M. K., Amor, F. B., Driss, A. & Jouini, T. (2001). Z. Kristallogr. New Cryst. Struct.216, 631–633.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Chuklanova, E. B., Polynova, T. N., Porai-Koshits, M. A. & Babeshkina, G. K. (1981). Koord. Khim.7, 944–951.
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). PROCESS-AUTO Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Rigaku (2006). SCXmini Benchtop Crystallography System Software Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Thakuria, H. & Das, G. (2007). Polyhedron, 26, 149–153.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography