PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m784–m785.
Published online 2010 June 16. doi:  10.1107/S160053681002194X
PMCID: PMC3006852

Diaqua­(isonicotinamide-κN 1)(4-meth­oxy­benzoato-κ2 O,O′)(4-meth­oxy­benzoato-κO)cobalt(II)

Abstract

In the title complex, [Co(C8H7O3)2(C6H6N2O)(H2O)2], the CoII atom is coordinated by three O atoms from two 4-meth­oxy­benzoate ligands, which act in different modes, viz. monodentate and bidentate, two water mol­ecules and one N atom of the isonicotinamide ligand in a distorted octa­hedral geometry. The monodentate-coordinated carboxyl­ate group is involved in an intra­molecular O—H(...)O hydrogen bond with the coordinated water mol­ecule. In the crystal structure, inter­molecular O—H(...)O and N—H(...)O hydrogen bonds link the mol­ecules into layers parallel to the ab plane. The crystal packing is further stabilized by weak C—H(...)O hydrogen bonds and π–π inter­actions indicated by the short distance of 3.6181 (8) Å between the centroids of the benzene and pyridine rings of neighbouring mol­ecules.

Related literature

For general background to niacin and the nicotinic acid deriv­ative N,N-diethyl­nicotinamide, see: Krishnamachari (1974 [triangle]) and Bigoli et al. (1972 [triangle]), respectively. For related structures, see: Greenaway et al. (1984 [triangle]); Hökelek et al. (2009a [triangle],b [triangle],c [triangle],d [triangle]); Necefoğlu et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m784-scheme1.jpg

Experimental

Crystal data

  • [Co(C8H7O3)2(C6H6N2O)(H2O)2]
  • M r = 519.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m784-efi1.jpg
  • a = 8.2666 (2) Å
  • b = 6.8055 (2) Å
  • c = 20.5415 (4) Å
  • β = 99.808 (2)°
  • V = 1138.74 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 100 K
  • 0.39 × 0.32 × 0.28 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.739, T max = 0.791
  • 11263 measured reflections
  • 4838 independent reflections
  • 4597 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.050
  • S = 1.01
  • 4838 reflections
  • 333 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.24 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1761 Friedel pairs
  • Flack parameter: 0.015 (7)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002194X/cv2727sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002194X/cv2727Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

supplementary crystallographic information

Comment

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound has been synthesized. Herein we report its crystal structure.

The title compound, (I), is a monomeric complex, where the CoII ion is surrounded by two methoxybenzoate (MB) anions, one isonicotinamide (INA) ligand and two coordinated water molecules. One of the MB anions acts as a bidentate ligand, while the other is monodentate. The structures of similar complexes , [Mn(C9H10NO2)2(C6H6N2O)(H2O)2] (II) (Hökelek et al., 2009a), [Co(C9H10NO2)2(C6H6N2O)(H2O)2] (III) (Hökelek et al., 2009b), [Cd(C8H7O2)2(C6H6N2O)2(H2O)].H2O (IV) (Necefoğlu et al., 2010), [Zn(C9H10NO2)2(C6H6N2O)(H2O)2] (V) (Hökelek et al., 2009c) and [Zn(C8H8NO2)2(C6H6N2O)2].H2O (VI) (Hökelek et al., 2009d) have also been determined.

In (I) (Fig. 1), the four O atoms (O1, O2, O5 and O9) in the equatorial plane around the Co1 form a highly distorted square-planar arrangement, while the distorted octahedral coordination geometry is completed by the N atom (N1) of INA ligand and the O atom (O8) of the second water molecule in the axial positions. The average Co—O bond length is 2.1171 (12) Å and the Co atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O4/C9/O5) by -0.0061 (2) Å and -0.5367 (2) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 12.12 (12)° and 9.26 (13)°, respectively, while those between rings A, B and C (N1/C17—C21) are A/B = 78.18 (4), A/C = 74.20 (5) and B/C = 6.23 (5) °. The intramolecular O—H···O hydrogen bond (Table 1) between the monodentate-coordinated carboxyl group and a coordinated water molecule results in a six-membered ring D (Co1/O4/O5/O8/C9/H81) adopting envelope conformation, with atom Co1 displaced by -0.5481 (2) Å from the plane of the other ring atoms. In (I), the O1—Co1—O2 angle is 60.32 (4)°. The corresponding O—M—O (where M is a metal) angles are 54.71 (4)° in (IV), 60.03 (6)° in (V), 59.02 (8)° in (VI) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(VII); Greenaway et al., 1984].

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to ab plane. The crystal packing is further stabilized by the weak C—H···O hydrogen bonds (Table 1). The π–π contact between the benzene and pyridine rings, Cg2—Cg3i [symmetry code: (i) x, y + 1, z, where Cg2 and Cg3 are the centroids of the rings B (C9—C14) and C (N1/C17—C21), respectively] may also stabilize the structure, with centroid-centroid distance of 3.6181 (8) Å.

Experimental

The title compound was prepared by the reaction of CoSO4.7H2O (2.81 g, 10 mmol) in H2O (50 ml) and INA (2.44 g, 20 mmol) in H2O (50 ml) with sodium 4-methoxybenzoate (3.48 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving brown single crystals.

Refinement

Atoms H81, H82, H91, H92 (for water molecules) and H2A, H2B (for NH2) were located in difference Fourier maps and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed line indicates the hydrogen-bonding.

Crystal data

[Co(C8H7O3)2(C6H6N2O)(H2O)2]F(000) = 538
Mr = 519.36Dx = 1.515 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6882 reflections
a = 8.2666 (2) Åθ = 2.5–28.4°
b = 6.8055 (2) ŵ = 0.81 mm1
c = 20.5415 (4) ÅT = 100 K
β = 99.808 (2)°Block, brown
V = 1138.74 (5) Å30.39 × 0.32 × 0.28 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer4838 independent reflections
Radiation source: fine-focus sealed tube4597 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 28.4°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→9
Tmin = 0.739, Tmax = 0.791k = −8→9
11263 measured reflectionsl = −27→27

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022w = 1/[σ2(Fo2) + (0.0215P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max = 0.003
S = 1.01Δρmax = 0.29 e Å3
4838 reflectionsΔρmin = −0.24 e Å3
333 parametersAbsolute structure: Flack (1983), 1761 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.015 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.83963 (2)0.92738 (3)0.717117 (8)0.01106 (5)
O10.87439 (13)0.72789 (18)0.79844 (5)0.0132 (2)
O20.75818 (13)1.01182 (18)0.81134 (5)0.0145 (2)
O30.68768 (15)0.5746 (2)1.08004 (5)0.0212 (3)
O40.78237 (13)0.51498 (18)0.63163 (5)0.0156 (2)
O50.95880 (13)0.76378 (18)0.65605 (5)0.0146 (2)
O61.43741 (13)0.13627 (18)0.56391 (5)0.0160 (2)
O71.44482 (14)1.65456 (18)0.77779 (5)0.0160 (2)
O80.60930 (14)0.78883 (19)0.68139 (6)0.0147 (2)
H810.652 (3)0.692 (4)0.6668 (10)0.024 (6)*
H820.564 (3)0.750 (4)0.7153 (12)0.052 (7)*
O90.72143 (15)1.1511 (2)0.66328 (6)0.0177 (3)
H910.639 (2)1.126 (4)0.6396 (10)0.024 (6)*
H920.749 (2)1.277 (4)0.6543 (9)0.021 (5)*
N11.05301 (16)1.0966 (2)0.74674 (6)0.0127 (3)
N21.62169 (17)1.4016 (3)0.79899 (7)0.0175 (3)
H2A1.643 (2)1.290 (4)0.8055 (9)0.015 (5)*
H2B1.708 (3)1.486 (4)0.8026 (10)0.033 (6)*
C10.80942 (19)0.8473 (3)0.83434 (7)0.0130 (3)
C20.79173 (19)0.7843 (3)0.90221 (7)0.0140 (3)
C30.86387 (19)0.6109 (3)0.92813 (7)0.0172 (3)
H30.93230.54200.90460.021*
C40.8362 (2)0.5378 (3)0.98853 (7)0.0190 (4)
H40.88620.42201.00560.023*
C50.7328 (2)0.6403 (3)1.02288 (7)0.0172 (4)
C60.6650 (2)0.8189 (3)0.99909 (8)0.0200 (4)
H60.60010.89011.02350.024*
C70.69427 (19)0.8905 (3)0.93914 (7)0.0172 (4)
H70.64891.00990.92330.021*
C80.7330 (2)0.3780 (3)1.10016 (8)0.0238 (4)
H8A0.67630.33971.13520.036*
H8B0.84930.37181.11540.036*
H8C0.70380.29061.06330.036*
C90.92278 (19)0.5941 (2)0.63394 (7)0.0125 (3)
C101.05374 (18)0.4757 (2)0.60954 (7)0.0122 (4)
C111.0197 (2)0.2936 (3)0.57978 (7)0.0160 (3)
H110.91170.24930.57160.019*
C121.14209 (19)0.1759 (3)0.56200 (7)0.0160 (3)
H121.11680.05510.54160.019*
C131.30388 (19)0.2427 (3)0.57528 (7)0.0135 (3)
C141.33919 (17)0.4281 (3)0.60267 (6)0.0160 (3)
H141.44640.47490.60930.019*
C151.2158 (2)0.5421 (3)0.61986 (7)0.0148 (3)
H151.24060.66510.63860.018*
C161.4086 (2)−0.0503 (3)0.53119 (7)0.0191 (4)
H16A1.5118−0.10950.52710.029*
H16B1.3448−0.03120.48800.029*
H16C1.3501−0.13470.55660.029*
C171.20276 (19)1.0299 (3)0.74076 (7)0.0156 (3)
H171.21250.90180.72610.019*
C181.34326 (19)1.1433 (3)0.75550 (7)0.0143 (3)
H181.44521.09100.75180.017*
C191.32986 (18)1.3358 (2)0.77577 (7)0.0119 (3)
C201.17472 (17)1.4047 (3)0.78314 (6)0.0132 (3)
H201.16141.53230.79750.016*
C211.04258 (19)1.2809 (3)0.76878 (7)0.0145 (3)
H210.94021.32730.77460.017*
C221.47067 (19)1.4762 (2)0.78517 (7)0.0135 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.00979 (9)0.00942 (10)0.01397 (8)−0.00058 (10)0.00201 (6)−0.00009 (9)
O10.0127 (5)0.0116 (6)0.0158 (5)0.0014 (5)0.0036 (4)−0.0003 (4)
O20.0120 (6)0.0131 (6)0.0190 (5)0.0013 (5)0.0042 (4)0.0016 (5)
O30.0236 (7)0.0243 (8)0.0170 (5)0.0001 (6)0.0068 (5)0.0039 (5)
O40.0115 (5)0.0136 (6)0.0223 (5)−0.0021 (5)0.0046 (4)−0.0018 (5)
O50.0133 (5)0.0123 (6)0.0191 (5)−0.0025 (5)0.0051 (4)−0.0027 (5)
O60.0133 (5)0.0146 (7)0.0201 (5)0.0021 (5)0.0033 (4)−0.0031 (5)
O70.0144 (6)0.0106 (6)0.0237 (5)0.0000 (5)0.0057 (4)−0.0008 (5)
O80.0124 (6)0.0125 (7)0.0192 (5)−0.0017 (5)0.0029 (4)−0.0006 (5)
O90.0139 (6)0.0125 (7)0.0246 (6)−0.0031 (5)−0.0029 (5)0.0033 (5)
N10.0124 (6)0.0120 (7)0.0137 (5)−0.0005 (6)0.0024 (5)0.0007 (5)
N20.0111 (6)0.0087 (9)0.0324 (7)−0.0007 (6)0.0029 (5)−0.0019 (7)
C10.0066 (7)0.0138 (8)0.0178 (7)−0.0038 (6)0.0000 (6)−0.0006 (6)
C20.0121 (7)0.0141 (9)0.0153 (6)−0.0031 (7)0.0010 (5)0.0003 (6)
C30.0148 (8)0.0194 (10)0.0174 (7)0.0026 (7)0.0031 (6)−0.0007 (7)
C40.0178 (8)0.0183 (10)0.0202 (7)0.0026 (7)0.0015 (6)0.0033 (7)
C50.0148 (8)0.0226 (10)0.0139 (6)−0.0037 (7)0.0019 (6)0.0004 (6)
C60.0211 (9)0.0204 (10)0.0201 (7)0.0019 (7)0.0076 (6)−0.0029 (7)
C70.0174 (7)0.0140 (11)0.0206 (7)−0.0004 (7)0.0042 (6)−0.0006 (6)
C80.0236 (9)0.0289 (13)0.0188 (7)−0.0002 (8)0.0030 (6)0.0080 (7)
C90.0140 (8)0.0123 (9)0.0112 (6)0.0002 (6)0.0017 (6)0.0016 (6)
C100.0117 (7)0.0137 (10)0.0115 (6)0.0007 (6)0.0025 (5)0.0023 (5)
C110.0116 (8)0.0175 (9)0.0189 (7)−0.0026 (7)0.0025 (6)−0.0010 (7)
C120.0167 (8)0.0138 (9)0.0174 (7)−0.0025 (7)0.0029 (6)−0.0037 (6)
C130.0150 (8)0.0143 (9)0.0116 (6)0.0008 (7)0.0031 (5)0.0004 (6)
C140.0126 (6)0.0170 (8)0.0187 (6)−0.0038 (9)0.0034 (5)−0.0018 (8)
C150.0175 (8)0.0120 (9)0.0151 (6)−0.0023 (7)0.0031 (6)−0.0033 (6)
C160.0222 (8)0.0158 (10)0.0191 (6)0.0021 (8)0.0035 (6)−0.0044 (7)
C170.0151 (8)0.0119 (9)0.0198 (7)0.0013 (7)0.0030 (6)−0.0024 (6)
C180.0101 (7)0.0135 (9)0.0200 (7)0.0021 (7)0.0047 (6)−0.0011 (6)
C190.0121 (7)0.0126 (8)0.0116 (6)−0.0016 (6)0.0031 (5)0.0008 (6)
C200.0139 (7)0.0089 (10)0.0175 (6)0.0032 (7)0.0048 (5)−0.0019 (6)
C210.0122 (8)0.0142 (9)0.0178 (7)0.0008 (7)0.0047 (6)−0.0010 (6)
C220.0136 (7)0.0136 (10)0.0145 (6)−0.0018 (6)0.0052 (5)−0.0022 (5)

Geometric parameters (Å, °)

Co1—O12.1338 (11)C6—C51.392 (3)
Co1—O22.2301 (11)C6—H60.9300
Co1—O52.0506 (11)C7—C61.383 (2)
Co1—O82.1394 (12)C7—H70.9300
Co1—O92.0317 (13)C8—H8A0.9600
Co1—N12.1077 (13)C8—H8B0.9600
O1—C11.276 (2)C8—H8C0.9600
O2—C11.260 (2)C10—C91.502 (2)
O3—C51.3662 (19)C10—C111.389 (2)
O3—C81.431 (2)C10—C151.395 (2)
O4—C91.2729 (19)C11—H110.9300
O5—C91.258 (2)C12—C111.387 (2)
O6—C131.3730 (19)C12—C131.395 (2)
O6—C161.437 (2)C12—H120.9300
O7—C221.237 (2)C14—C131.392 (3)
O8—H810.83 (2)C14—C151.375 (2)
O8—H820.89 (3)C14—H140.9300
O9—H910.79 (2)C15—H150.9300
O9—H920.91 (2)C16—H16A0.9600
N1—C171.344 (2)C16—H16B0.9600
N1—C211.342 (2)C16—H16C0.9600
N2—C221.333 (2)C17—C181.385 (2)
N2—H2A0.79 (2)C17—H170.9300
N2—H2B0.91 (2)C18—H180.9300
C2—C11.489 (2)C19—C181.385 (2)
C2—C31.387 (2)C19—C201.398 (2)
C2—C71.398 (2)C20—H200.9300
C3—C41.392 (2)C21—C201.371 (2)
C3—H30.9300C21—H210.9300
C4—H40.9300C22—C191.493 (2)
C5—C41.386 (2)
O1—Co1—O260.32 (4)C6—C7—H7119.8
O1—Co1—O888.94 (4)O3—C8—H8A109.5
O5—Co1—O196.83 (4)O3—C8—H8B109.5
O5—Co1—O2156.69 (4)O3—C8—H8C109.5
O5—Co1—O892.47 (5)H8A—C8—H8B109.5
O5—Co1—N190.44 (5)H8A—C8—H8C109.5
O8—Co1—O291.64 (5)H8B—C8—H8C109.5
O9—Co1—O1153.01 (5)O4—C9—C10117.72 (14)
O9—Co1—O295.22 (5)O5—C9—O4124.05 (14)
O9—Co1—O5108.09 (5)O5—C9—C10118.23 (13)
O9—Co1—O879.99 (5)C11—C10—C9121.43 (14)
O9—Co1—N192.80 (5)C11—C10—C15118.24 (15)
N1—Co1—O197.30 (5)C15—C10—C9120.23 (14)
N1—Co1—O288.29 (5)C10—C11—H11119.1
N1—Co1—O8172.76 (5)C12—C11—C10121.90 (15)
C1—O1—Co191.92 (10)C12—C11—H11119.1
C1—O2—Co187.97 (10)C11—C12—C13118.61 (16)
C5—O3—C8117.25 (14)C11—C12—H12120.7
C9—O5—Co1127.62 (10)C13—C12—H12120.7
C13—O6—C16118.14 (12)O6—C13—C14115.31 (13)
Co1—O8—H8193.8 (15)O6—C13—C12124.54 (15)
Co1—O8—H82109.5 (15)C14—C13—C12120.15 (15)
H81—O8—H82108 (2)C13—C14—H14119.9
Co1—O9—H91117.3 (17)C15—C14—C13120.10 (14)
Co1—O9—H92134.2 (12)C15—C14—H14119.9
H91—O9—H92108 (2)C10—C15—H15119.6
C17—N1—Co1121.84 (11)C14—C15—C10120.90 (16)
C21—N1—Co1120.64 (11)C14—C15—H15119.6
C21—N1—C17117.40 (14)O6—C16—H16A109.5
C22—N2—H2A125.4 (14)O6—C16—H16B109.5
C22—N2—H2B118.0 (14)O6—C16—H16C109.5
H2A—N2—H2B117 (2)H16A—C16—H16B109.5
O1—C1—C2118.41 (15)H16A—C16—H16C109.5
O2—C1—O1119.79 (14)H16B—C16—H16C109.5
O2—C1—C2121.77 (15)N1—C17—C18122.89 (16)
C3—C2—C7118.77 (14)N1—C17—H17118.6
C3—C2—C1120.01 (15)C18—C17—H17118.6
C7—C2—C1121.09 (15)C17—C18—H18120.5
C2—C3—C4121.42 (16)C19—C18—C17119.09 (15)
C2—C3—H3119.3C19—C18—H18120.5
C4—C3—H3119.3C18—C19—C20118.15 (15)
C3—C4—H4120.6C18—C19—C22122.94 (15)
C5—C4—C3118.90 (17)C20—C19—C22118.75 (15)
C5—C4—H4120.6C19—C20—H20120.6
O3—C5—C4123.71 (17)C21—C20—C19118.87 (17)
O3—C5—C6115.79 (15)C21—C20—H20120.6
C4—C5—C6120.49 (15)N1—C21—C20123.53 (15)
C7—C6—C5119.92 (16)N1—C21—H21118.2
C7—C6—H6120.0C20—C21—H21118.2
C5—C6—H6120.0O7—C22—N2122.40 (15)
C2—C7—H7119.8O7—C22—C19119.83 (14)
C6—C7—C2120.36 (16)N2—C22—C19117.72 (15)
O2—Co1—O1—C10.09 (8)C7—C2—C1—O210.6 (2)
O5—Co1—O1—C1175.24 (9)C3—C2—C1—O18.3 (2)
O8—Co1—O1—C1−92.40 (9)C7—C2—C1—O1−167.51 (14)
O9—Co1—O1—C1−27.20 (15)C1—C2—C3—C4−173.46 (15)
N1—Co1—O1—C183.91 (9)C7—C2—C3—C42.4 (2)
O1—Co1—O2—C1−0.10 (8)C1—C2—C7—C6173.09 (15)
O5—Co1—O2—C1−12.36 (15)C3—C2—C7—C6−2.8 (2)
O8—Co1—O2—C187.75 (9)C2—C3—C4—C50.7 (3)
O9—Co1—O2—C1167.84 (9)O3—C5—C4—C3175.05 (15)
N1—Co1—O2—C1−99.50 (9)C6—C5—C4—C3−3.5 (2)
O1—Co1—O5—C960.93 (12)C7—C6—C5—O3−175.47 (15)
O2—Co1—O5—C971.64 (17)C7—C6—C5—C43.2 (2)
O8—Co1—O5—C9−28.29 (12)C2—C7—C6—C50.0 (2)
O9—Co1—O5—C9−108.57 (12)C11—C10—C9—O45.9 (2)
N1—Co1—O5—C9158.34 (12)C11—C10—C9—O5−174.93 (13)
O1—Co1—N1—C1775.29 (12)C15—C10—C9—O4−170.39 (13)
O1—Co1—N1—C21−108.72 (11)C15—C10—C9—O58.8 (2)
O2—Co1—N1—C17135.07 (12)C9—C10—C11—C12−174.61 (14)
O2—Co1—N1—C21−48.93 (11)C15—C10—C11—C121.7 (2)
O5—Co1—N1—C17−21.65 (12)C9—C10—C15—C14174.66 (14)
O5—Co1—N1—C21154.35 (11)C11—C10—C15—C14−1.7 (2)
O9—Co1—N1—C17−129.79 (12)C13—C12—C11—C100.8 (2)
O9—Co1—N1—C2146.21 (12)C11—C12—C13—O6175.92 (14)
Co1—O1—C1—O2−0.17 (14)C11—C12—C13—C14−3.3 (2)
Co1—O1—C1—C2177.95 (12)C15—C14—C13—O6−175.95 (13)
Co1—O2—C1—O10.16 (14)C15—C14—C13—C123.3 (2)
Co1—O2—C1—C2−177.89 (13)C13—C14—C15—C10−0.8 (2)
C8—O3—C5—C4−8.5 (2)N1—C17—C18—C19−1.6 (2)
C8—O3—C5—C6170.10 (14)C20—C19—C18—C172.6 (2)
Co1—O5—C9—O419.3 (2)C22—C19—C18—C17−172.69 (13)
Co1—O5—C9—C10−159.84 (9)C18—C19—C20—C21−1.3 (2)
C16—O6—C13—C125.3 (2)C22—C19—C20—C21174.22 (13)
C16—O6—C13—C14−175.44 (13)N1—C21—C20—C19−1.2 (2)
Co1—N1—C17—C18175.31 (11)O7—C22—C19—C18151.80 (15)
C21—N1—C17—C18−0.8 (2)N2—C22—C19—C18−25.7 (2)
Co1—N1—C21—C20−173.91 (11)O7—C22—C19—C20−23.5 (2)
C17—N1—C21—C202.3 (2)N2—C22—C19—C20158.99 (13)
C3—C2—C1—O2−173.63 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.79 (3)2.11 (3)2.877 (2)164.0 (17)
N2—H2B···O1ii0.91 (3)2.16 (3)3.050 (2)167 (2)
O8—H81···O40.83 (3)1.84 (3)2.6577 (17)167 (3)
O8—H82···O7iii0.89 (2)1.86 (3)2.7427 (16)172 (2)
O9—H91···O6iv0.786 (19)2.078 (19)2.8384 (16)163 (2)
O9—H92···O4v0.91 (3)1.72 (3)2.6307 (18)174.1 (15)
C8—H8A···O7vi0.962.533.466 (2)166
C16—H16B···O4vii0.962.523.4752 (18)171

Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x−1, y−1, z; (iv) x−1, y+1, z; (v) x, y+1, z; (vi) −x+2, y−3/2, −z+2; (vii) −x+2, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2727).

References

  • Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.
  • Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1037–m1038. [PMC free article] [PubMed]
  • Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628. [PMC free article] [PubMed]
  • Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m651–m652. [PMC free article] [PubMed]
  • Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365–m1366. [PMC free article] [PubMed]
  • Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr.27, 108–111. [PubMed]
  • Necefoğlu, H., Çimen, E., Tercan, B., Süzen, Y. & Hökelek, T. (2010). Acta Cryst. E66, m392–m393. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography