PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m833.
Published online 2010 June 23. doi:  10.1107/S1600536810023445
PMCID: PMC3006851

Bis(4-aminobenzenesulfonato)tri­aqua­bis(1,10-phenanthroline)neodymium(III) nitrate tetrahydrate

Abstract

The title complex, [Nd(C6H6NO3S)2(C12H8N2)2(H2O)3]NO3·4H2O, comprises a mononuclear cation, an NO3 anion and two uncoordinated water mol­ecules; the NdIII cation, one coordinated water mol­ecule, and the NO3 anion each lie on a twofold axis of symmetry. The NdIII ion exhibits an NdN4O5 coordination environment comprising two O atoms of two monodentate 4-amino­benzene­sulfonato ligands, four N atoms of the bidentate 1,10-phenanthroline ligands, and three water-O atoms. The coordination geometry is based on a tricapped triangular-prismatic arrangement. The components are consolidated into a three-dimensional network via O—H(...)O, O—H(...)N and N—H(...)O hydrogen-bonding inter­actions

Related literature

For background to the applications of rare earth complexes, see: Li et al. (2007 [triangle]); Tang et al. (2006 [triangle]); Xie et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m833-scheme1.jpg

Experimental

Crystal data

  • [Nd(C6H6NO3S)2(C12H8N2)2(H2O)3]NO3·4H2O
  • M r = 1037.13
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m833-efi1.jpg
  • a = 17.4990 (18) Å
  • b = 14.2788 (15) Å
  • c = 16.7045 (17) Å
  • V = 4173.9 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.42 mm−1
  • T = 293 K
  • 0.32 × 0.22 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.656, T max = 0.789
  • 34751 measured reflections
  • 3883 independent reflections
  • 3287 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.066
  • S = 1.21
  • 3883 reflections
  • 282 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.76 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023445/tk2665sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023445/tk2665Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Technology Gallery Foundation of Fujian Province of China (grant No. 2008 F5053).

supplementary crystallographic information

Comment

Rare earth complexes have been extensively studied owing to their unique structures and potential applications as biomedical, catalytic, and magnetic agents, as well as nonlinear optical materials (Tang et al., 2006; Li et al., 2007). Therefore, the rational design and synthesis of rare earth supramolecular complexes are highlighted in supramolecular and biochemical research.

The molecules comprising the asymmetric unit of the title compound, (I), are presented in Fig 1. The structure comprises a mononuclear [Nd(C6H6NO3S)2(C12H8N2)2(H2O)3]+ cation, one NO3- anion and two lattice water molecules. The Nd(III) cation, one coordinated water molecule (O4) and the NO3- anion are each located on a crystallographic 2-fold axis. The Nd(III) ion is within a distorted tricapped triangular prismatic coordination polyhedron completed by two O atoms from two 4-aminobenzenesulfonato ligands, three O atoms from three coordinated water, and four N atom from two 1,10-phenanthroline ligands; see Table 1 for bond distances. The average bond lengths of Nd—O and Nd—N are shorter than the averages of the comparable bond lengths in [Ln(C6H6NO3S)2(C12H8N2)2(H2O)3]NO3.(H2O)2 for Ln = LaIII and CeIII (Xie et al., 2009), consistent with the lanthanide contraction.

The components of the structure are consolidated into a 3-D network via hydrogen bonding interactions, Table 2.

Experimental

An aqueous solution (5 ml) of Nd(NO3)3.6H2O (1.0 mmol) was added slowly to a solution of p-aminobenzenesulfonilic acid (1.0 mmol) in H2O (5 ml). After refluxing for 2 h, a solution of 1,10-phenanthroline (1.0 mmol) in ethanol (95%, 5 ml) was added slowly to the solution. Refluxing was continued for 2 h followed by filteration of the hot mixture. The purple single crystals suitable for X-ray analysis were obtained after three weeks by slow evaporation of the above filtrate held at room temperature. Yield 52%. IR (KBr): 3425(vs), 1666(s), 1624(s), 1600(s), 1572(m), 1515(s), 1506(s), 1419(vs), 1384(vs), 1342(w), 1316(m), 1304(m), 1231(s), 1122(vs), 1039(vs), 1012(s), 848(s), 825(m), 776(m), 729(s), 700(s), 632(m), 574(s) cm-1.

Refinement

H atoms bonded to N and C were placed geometrically and treated as riding, (N–H = 0.89 Å and C—H = 0.93 Å), with Uiso(H) = 1.5Ueq(N) or 1.2Ueq(C). The water-bound H atoms were found from Fourier difference maps, fixed at these positions (0.83-0.86 Å), and were refined as riding with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structures of the components of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Hydrogen atoms have been omitted for reasons of clarity. Symmetry operation a: 1-x, 1-y, -z.

Crystal data

[Nd(C6H6NO3S)2(C12H8N2)2(H2O)3]NO3·4H2OF(000) = 2108
Mr = 1037.13Dx = 1.650 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2148 reflections
a = 17.4990 (18) Åθ = 2.5–23.3°
b = 14.2788 (15) ŵ = 1.42 mm1
c = 16.7045 (17) ÅT = 293 K
V = 4173.9 (7) Å3Block, pink
Z = 40.32 × 0.22 × 0.16 mm

Data collection

Bruker SMART CCD area-detector diffractometer3883 independent reflections
Radiation source: fine-focus sealed tube3287 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −21→21
Tmin = 0.656, Tmax = 0.789k = −17→17
34751 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.21w = 1/[σ2(Fo2) + (0.0264P)2 + 3.2531P] where P = (Fo2 + 2Fc2)/3
3883 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.76 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Nd10.25000.25000.038262 (10)0.02429 (7)
S10.36306 (4)0.36807 (5)0.20699 (4)0.03383 (16)
O10.31177 (10)0.33811 (14)0.14217 (11)0.0411 (5)
O20.35809 (13)0.3088 (2)0.27640 (12)0.0611 (7)
O30.35040 (13)0.46714 (16)0.22412 (13)0.0529 (6)
O40.25000.2500−0.11307 (15)0.0374 (6)
H1W0.28620.2332−0.14220.056*
O50.24704 (12)0.08714 (15)−0.01000 (13)0.0483 (5)
H2W0.24730.0658−0.05760.073*
H3W0.24170.04180.02260.073*
O60.25000.75000.1311 (3)0.0821 (12)
H4W0.31050.53990.12830.123*
H5W0.27340.61800.10170.123*
O70.2625 (2)0.6779 (2)0.2436 (2)0.0967 (10)
H6W0.28050.49110.31420.145*
H7W0.24020.55710.35680.145*
O80.29153 (17)0.56444 (16)0.08766 (14)0.0662 (7)
O90.24465 (15)0.49835 (19)0.34785 (14)0.0708 (8)
N10.67660 (15)0.3332 (2)0.0745 (2)0.0696 (9)
H1A0.67630.35060.02330.104*
H1B0.69110.27360.07800.104*
N20.36395 (12)0.14185 (16)0.10577 (13)0.0346 (5)
N30.39407 (13)0.26033 (15)−0.01948 (13)0.0311 (5)
N40.25000.75000.2066 (3)0.0571 (11)
C10.45674 (14)0.35885 (18)0.16953 (14)0.0292 (6)
C20.50570 (16)0.2901 (2)0.19801 (16)0.0371 (6)
H20.48950.24950.23810.045*
C30.57842 (17)0.2820 (2)0.1670 (2)0.0450 (7)
H30.61130.23650.18710.054*
C40.60297 (16)0.3411 (2)0.10621 (18)0.0426 (7)
C50.55417 (17)0.4112 (2)0.07957 (17)0.0422 (7)
H50.57070.45280.04040.051*
C60.48166 (16)0.4196 (2)0.11059 (16)0.0370 (6)
H60.44930.46630.09180.044*
C70.35188 (18)0.0874 (2)0.16914 (19)0.0480 (8)
H70.30470.09080.19460.058*
C80.4070 (2)0.0249 (3)0.1995 (2)0.0576 (9)
H80.3959−0.01180.24410.069*
C90.4759 (2)0.0187 (2)0.1636 (2)0.0548 (9)
H90.5125−0.02300.18270.066*
C100.49175 (16)0.0758 (2)0.09720 (18)0.0423 (7)
C110.56503 (18)0.0738 (3)0.0574 (2)0.0541 (9)
H110.60230.03180.07430.065*
C120.57972 (17)0.1318 (3)−0.0037 (2)0.0528 (9)
H120.62710.1293−0.02880.063*
C130.52349 (16)0.1980 (2)−0.03103 (17)0.0397 (7)
C140.53933 (17)0.2646 (2)−0.09115 (18)0.0467 (8)
H140.58690.2657−0.11590.056*
C150.48461 (17)0.3270 (2)−0.11248 (17)0.0427 (7)
H150.49480.3727−0.15060.051*
C160.41244 (16)0.3217 (2)−0.07639 (16)0.0361 (6)
H160.37510.3636−0.09320.043*
C170.44996 (14)0.19932 (19)0.00458 (16)0.0305 (6)
C180.43377 (15)0.13720 (18)0.07021 (16)0.0319 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Nd10.02232 (11)0.02820 (11)0.02233 (11)0.00157 (8)0.0000.000
S10.0281 (3)0.0459 (4)0.0275 (3)−0.0015 (3)−0.0001 (3)−0.0048 (3)
O10.0293 (10)0.0500 (12)0.0442 (11)−0.0011 (9)−0.0082 (8)−0.0131 (10)
O20.0438 (13)0.099 (2)0.0406 (12)0.0019 (13)0.0119 (10)0.0245 (12)
O30.0455 (13)0.0524 (13)0.0607 (14)0.0027 (10)0.0018 (10)−0.0276 (11)
O40.0294 (13)0.0596 (18)0.0231 (13)0.0086 (12)0.0000.000
O50.0782 (16)0.0345 (11)0.0323 (10)0.0046 (10)−0.0075 (10)−0.0015 (9)
O60.112 (4)0.070 (3)0.064 (3)0.030 (2)0.0000.000
O70.136 (3)0.0635 (19)0.091 (2)0.0118 (18)0.003 (2)0.0209 (19)
O80.095 (2)0.0502 (14)0.0531 (14)0.0019 (14)0.0048 (14)−0.0095 (12)
O90.099 (2)0.0661 (17)0.0477 (14)0.0286 (14)0.0217 (13)0.0124 (13)
N10.0397 (16)0.081 (2)0.088 (2)−0.0044 (15)0.0208 (16)−0.0120 (19)
N20.0288 (12)0.0390 (13)0.0359 (12)0.0026 (10)−0.0036 (10)0.0035 (10)
N30.0296 (12)0.0345 (13)0.0291 (11)−0.0014 (9)−0.0006 (9)−0.0023 (10)
N40.055 (3)0.052 (3)0.064 (3)0.0073 (19)0.0000.000
C10.0276 (13)0.0366 (15)0.0233 (12)−0.0038 (11)−0.0015 (10)−0.0030 (11)
C20.0365 (16)0.0398 (15)0.0352 (15)−0.0041 (13)−0.0041 (12)0.0061 (13)
C30.0324 (16)0.0465 (17)0.0559 (19)0.0029 (13)−0.0060 (14)0.0006 (15)
C40.0315 (15)0.0512 (18)0.0449 (17)−0.0100 (13)0.0041 (13)−0.0140 (15)
C50.0458 (17)0.0458 (17)0.0349 (15)−0.0116 (14)0.0068 (13)0.0031 (14)
C60.0400 (16)0.0374 (15)0.0337 (14)−0.0013 (12)−0.0018 (12)0.0031 (12)
C70.0408 (17)0.056 (2)0.0474 (18)0.0022 (15)−0.0044 (14)0.0198 (16)
C80.057 (2)0.060 (2)0.056 (2)0.0021 (17)−0.0161 (17)0.0238 (17)
C90.052 (2)0.0476 (19)0.065 (2)0.0147 (15)−0.0201 (17)0.0099 (17)
C100.0363 (16)0.0383 (16)0.0523 (18)0.0098 (13)−0.0122 (13)−0.0072 (14)
C110.0380 (18)0.056 (2)0.068 (2)0.0207 (15)−0.0120 (16)−0.0133 (18)
C120.0272 (15)0.068 (2)0.064 (2)0.0101 (15)0.0037 (15)−0.0190 (19)
C130.0302 (15)0.0477 (18)0.0412 (16)−0.0022 (13)0.0007 (12)−0.0165 (14)
C140.0310 (15)0.069 (2)0.0399 (16)−0.0109 (15)0.0081 (13)−0.0170 (16)
C150.0450 (17)0.0521 (18)0.0312 (14)−0.0155 (14)0.0048 (13)−0.0052 (14)
C160.0361 (15)0.0407 (16)0.0315 (14)−0.0054 (12)−0.0002 (12)−0.0016 (13)
C170.0242 (13)0.0335 (15)0.0337 (14)0.0001 (11)−0.0038 (11)−0.0110 (12)
C180.0283 (14)0.0320 (14)0.0354 (14)0.0015 (11)−0.0072 (11)−0.0072 (12)

Geometric parameters (Å, °)

Nd1—O12.4007 (18)C1—C21.387 (4)
Nd1—O1i2.4007 (18)C1—C61.383 (4)
Nd1—O5i2.462 (2)C2—C31.379 (4)
Nd1—O52.462 (2)C2—H20.9300
Nd1—O42.528 (3)C3—C41.389 (4)
Nd1—N3i2.703 (2)C3—H30.9300
Nd1—N32.703 (2)C4—C51.389 (4)
Nd1—N22.763 (2)C5—C61.376 (4)
Nd1—N2i2.763 (2)C5—H50.9300
S1—O21.438 (2)C6—H60.9300
S1—O31.460 (2)C7—C81.408 (4)
S1—O11.4701 (18)C7—H70.9300
S1—C11.760 (3)C8—C91.350 (5)
O4—H1W0.8343C8—H80.9300
O5—H2W0.8517C9—C101.404 (4)
O5—H3W0.8502C9—H90.9300
O6—N41.262 (6)C10—C181.415 (4)
O7—N41.220 (4)C10—C111.445 (4)
O8—H4W0.8327C11—C121.339 (5)
O8—H5W0.8602C11—H110.9300
O9—H6W0.8478C12—C131.439 (4)
O9—H7W0.8562C12—H120.9300
N1—C41.398 (4)C13—C141.411 (4)
N1—H1A0.8900C13—C171.418 (4)
N1—H1B0.8900C14—C151.355 (4)
N2—C71.330 (4)C14—H140.9300
N2—C181.360 (3)C15—C161.401 (4)
N3—C161.332 (3)C15—H150.9300
N3—C171.370 (3)C16—H160.9300
N4—O7ii1.220 (4)C17—C181.438 (4)
O1—Nd1—O1i87.40 (10)O7ii—N4—O7119.2 (5)
O1—Nd1—O5i74.47 (7)O7ii—N4—O6120.4 (3)
O1i—Nd1—O5i137.84 (7)O7—N4—O6120.4 (3)
O1—Nd1—O5137.84 (7)C2—C1—C6119.6 (2)
O1i—Nd1—O574.47 (7)C2—C1—S1120.4 (2)
O5i—Nd1—O5141.77 (10)C6—C1—S1120.0 (2)
O1—Nd1—O4136.30 (5)C1—C2—C3120.1 (3)
O1i—Nd1—O4136.30 (5)C1—C2—H2120.0
O5i—Nd1—O470.89 (5)C3—C2—H2120.0
O5—Nd1—O470.89 (5)C2—C3—C4120.6 (3)
O1—Nd1—N3i134.94 (6)C2—C3—H3119.7
O1i—Nd1—N3i79.02 (6)C4—C3—H3119.7
O5i—Nd1—N3i87.38 (7)C5—C4—C3118.8 (3)
O5—Nd1—N3i79.16 (7)C5—C4—N1120.2 (3)
O4—Nd1—N3i69.10 (5)C3—C4—N1120.9 (3)
O1—Nd1—N379.02 (6)C6—C5—C4120.6 (3)
O1i—Nd1—N3134.94 (6)C6—C5—H5119.7
O5i—Nd1—N379.16 (7)C4—C5—H5119.7
O5—Nd1—N387.38 (7)C5—C6—C1120.3 (3)
O4—Nd1—N369.10 (5)C5—C6—H6119.9
N3i—Nd1—N3138.20 (9)C1—C6—H6119.9
O1—Nd1—N270.91 (7)N2—C7—C8123.3 (3)
O1i—Nd1—N274.75 (6)N2—C7—H7118.4
O5i—Nd1—N2130.28 (7)C8—C7—H7118.4
O5—Nd1—N267.72 (7)C9—C8—C7119.5 (3)
O4—Nd1—N2114.09 (5)C9—C8—H8120.2
N3i—Nd1—N2142.02 (6)C7—C8—H8120.2
N3—Nd1—N260.20 (7)C8—C9—C10119.3 (3)
O1—Nd1—N2i74.75 (6)C8—C9—H9120.3
O1i—Nd1—N2i70.91 (7)C10—C9—H9120.3
O5i—Nd1—N2i67.72 (7)C9—C10—C18118.0 (3)
O5—Nd1—N2i130.28 (7)C9—C10—C11121.9 (3)
O4—Nd1—N2i114.09 (5)C18—C10—C11120.1 (3)
N3i—Nd1—N2i60.20 (7)C12—C11—C10120.6 (3)
N3—Nd1—N2i142.02 (6)C12—C11—H11119.7
N2—Nd1—N2i131.82 (9)C10—C11—H11119.7
O2—S1—O3113.77 (15)C11—C12—C13121.1 (3)
O2—S1—O1112.68 (14)C11—C12—H12119.4
O3—S1—O1109.49 (12)C13—C12—H12119.4
O2—S1—C1107.40 (13)C14—C13—C17117.9 (3)
O3—S1—C1106.48 (13)C14—C13—C12122.3 (3)
O1—S1—C1106.57 (11)C17—C13—C12119.8 (3)
S1—O1—Nd1163.72 (13)C15—C14—C13119.4 (3)
Nd1—O4—H1W125.7C15—C14—H14120.3
Nd1—O5—H2W130.1C13—C14—H14120.3
Nd1—O5—H3W120.8C14—C15—C16119.2 (3)
H2W—O5—H3W109.0C14—C15—H15120.4
H4W—O8—H5W107.4C16—C15—H15120.4
H6W—O9—H7W107.6N3—C16—C15124.0 (3)
C4—N1—H1A109.6N3—C16—H16118.0
C4—N1—H1B108.3C15—C16—H16118.0
H1A—N1—H1B109.5N3—C17—C13122.2 (3)
C7—N2—C18117.5 (2)N3—C17—C18118.4 (2)
C7—N2—Nd1122.47 (18)C13—C17—C18119.4 (2)
C18—N2—Nd1119.83 (17)N2—C18—C10122.4 (3)
C16—N3—C17117.1 (2)N2—C18—C17118.7 (2)
C16—N3—Nd1121.03 (18)C10—C18—C17118.9 (2)
C17—N3—Nd1121.76 (17)
O2—S1—O1—Nd1−61.6 (5)O1—S1—C1—C669.4 (2)
O3—S1—O1—Nd1170.7 (4)C6—C1—C2—C3−0.7 (4)
C1—S1—O1—Nd155.9 (5)S1—C1—C2—C3178.5 (2)
O1i—Nd1—O1—S177.3 (4)C1—C2—C3—C4−1.2 (4)
O5i—Nd1—O1—S1−141.2 (5)C2—C3—C4—C52.8 (4)
O5—Nd1—O1—S114.0 (5)C2—C3—C4—N1−179.9 (3)
O4—Nd1—O1—S1−102.7 (4)C3—C4—C5—C6−2.6 (4)
N3i—Nd1—O1—S1148.9 (4)N1—C4—C5—C6−179.9 (3)
N3—Nd1—O1—S1−59.5 (4)C4—C5—C6—C10.8 (4)
N2—Nd1—O1—S12.5 (4)C2—C1—C6—C50.9 (4)
N2i—Nd1—O1—S1148.2 (5)S1—C1—C6—C5−178.3 (2)
O1—Nd1—N2—C788.4 (2)C18—N2—C7—C8−1.2 (5)
O1i—Nd1—N2—C7−4.2 (2)Nd1—N2—C7—C8173.5 (3)
O5i—Nd1—N2—C7136.7 (2)N2—C7—C8—C90.0 (5)
O5—Nd1—N2—C7−83.3 (2)C7—C8—C9—C100.9 (5)
O4—Nd1—N2—C7−138.5 (2)C8—C9—C10—C18−0.6 (5)
N3i—Nd1—N2—C7−52.1 (3)C8—C9—C10—C11178.6 (3)
N3—Nd1—N2—C7176.5 (2)C9—C10—C11—C12−177.1 (3)
N2i—Nd1—N2—C741.5 (2)C18—C10—C11—C122.1 (5)
O1—Nd1—N2—C18−96.98 (19)C10—C11—C12—C130.4 (5)
O1i—Nd1—N2—C18170.5 (2)C11—C12—C13—C14175.2 (3)
O5i—Nd1—N2—C18−48.6 (2)C11—C12—C13—C17−2.9 (5)
O5—Nd1—N2—C1891.31 (19)C17—C13—C14—C150.2 (4)
O4—Nd1—N2—C1836.1 (2)C12—C13—C14—C15−177.9 (3)
N3i—Nd1—N2—C18122.54 (18)C13—C14—C15—C16−2.3 (4)
N3—Nd1—N2—C18−8.93 (17)C17—N3—C16—C150.1 (4)
N2i—Nd1—N2—C18−143.9 (2)Nd1—N3—C16—C15−175.9 (2)
O1—Nd1—N3—C16−101.0 (2)C14—C15—C16—N32.3 (4)
O1i—Nd1—N3—C16−176.01 (18)C16—N3—C17—C13−2.5 (4)
O5i—Nd1—N3—C16−24.94 (19)Nd1—N3—C17—C13173.55 (18)
O5—Nd1—N3—C16119.1 (2)C16—N3—C17—C18175.2 (2)
O4—Nd1—N3—C1648.57 (18)Nd1—N3—C17—C18−8.8 (3)
N3i—Nd1—N3—C1648.57 (18)C14—C13—C17—N32.3 (4)
N2—Nd1—N3—C16−175.2 (2)C12—C13—C17—N3−179.5 (3)
N2i—Nd1—N3—C16−54.2 (2)C14—C13—C17—C18−175.3 (2)
O1—Nd1—N3—C1783.12 (19)C12—C13—C17—C182.8 (4)
O1i—Nd1—N3—C178.1 (2)C7—N2—C18—C101.5 (4)
O5i—Nd1—N3—C17159.2 (2)Nd1—N2—C18—C10−173.37 (19)
O5—Nd1—N3—C17−56.76 (19)C7—N2—C18—C17−176.3 (3)
O4—Nd1—N3—C17−127.28 (19)Nd1—N2—C18—C178.8 (3)
N3i—Nd1—N3—C17−127.28 (19)C9—C10—C18—N2−0.6 (4)
N2—Nd1—N3—C178.96 (17)C11—C10—C18—N2−179.8 (3)
N2i—Nd1—N3—C17129.96 (18)C9—C10—C18—C17177.2 (3)
O2—S1—C1—C211.2 (3)C11—C10—C18—C17−2.0 (4)
O3—S1—C1—C2133.4 (2)N3—C17—C18—N2−0.3 (4)
O1—S1—C1—C2−109.8 (2)C13—C17—C18—N2177.5 (2)
O2—S1—C1—C6−169.6 (2)N3—C17—C18—C10−178.1 (2)
O3—S1—C1—C6−47.4 (2)C13—C17—C18—C10−0.4 (4)

Symmetry codes: (i) −x+1/2, −y+1/2, z; (ii) −x+1/2, −y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O9—H6W···S10.852.903.646 (2)149
O9—H6W···O30.851.972.810 (3)171
O8—H5W···N40.862.613.391 (3)152
O8—H5W···O70.862.533.109 (4)126
O8—H5W···O60.861.992.842 (3)170
O8—H4W···S10.832.933.661 (3)148
O8—H4W···O30.832.032.861 (3)174
O9—H7W···N1iii0.862.242.982 (4)145
O5—H3W···O8i0.851.962.793 (3)168
O5—H2W···O9iv0.851.832.670 (3)171
O4—H1W···O2iv0.831.952.773 (3)171
N1—H1A···O8v0.892.293.127 (4)158

Symmetry codes: (iii) x−1/2, −y+1, −z+1/2; (i) −x+1/2, −y+1/2, z; (iv) x, −y+1/2, z−1/2; (v) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2665).

References

  • Bruker (2001). SMART. Bruker AXS Inc., Madison,Wisconsin, USA.
  • Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, Y. Q., Ju, Y. L., Zhang, Y. B., Wang, C. Y., Zhang, T. T. & Li, X. (2007). Chin. J. Inorg. Chem 23, 969–974.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tang, Y., Tang, K. Z., Zhang, J., Qin, M. Y., Liu, M. Y. & Sun, Y. X. (2006). Acta Chim. Sin 64, 444–449.
  • Xie, Q. F., Huang, M. L. & Chen, Y. M. (2009). Chin. J. Inorg. Chem.25, 249–255.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography