PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1869–o1870.
Published online 2010 June 30. doi:  10.1107/S1600536810024785
PMCID: PMC3006847

Methyl 2,6-bis­[(5-chloro-4,6-dimeth­oxy­pyrimidin-2-yl)­oxy]benzoate

Abstract

In the title compound, C20H18Cl2N4O8, the two pyrimidine rings are inclined at dihedral angles of 66.68 (5) and 71.91 (6)° with respect to the central benzene ring. In the crystal structure, inter­molecular C—H(...)N hydrogen bonds link neighbouring mol­ecules into a ribbon-like structure along the b axis. The ribbons are inter­connected into a two-dimensional network parallel to the bc plane by short inter­molecular Cl(...)Cl [3.4427 (6) Å] and Cl(...)O [3.1420 (9) and 3.1750 (11) Å] inter­actions. The crystal structure is further stabilized by inter­molecular π–π inter­actions [centroid–centroid distance 3.4552 (8) Å] involving the pyrimidine rings.

Related literature

For general background to and applications of the title compound, see: Koichiro et al. (1988 [triangle], 1998 [triangle]); He et al. (2007 [triangle]); Li et al. (2006 [triangle]); Gerorge (1983 [triangle]). For graph-set descriptions of hydrogen-bonded ring motifs, see: Bernstein et al. (1995 [triangle]). For a closely related structure, see: Li & Luo (2006 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1869-scheme1.jpg

Experimental

Crystal data

  • C20H18Cl2N4O8
  • M r = 513.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1869-efi1.jpg
  • a = 29.354 (3) Å
  • b = 8.0485 (8) Å
  • c = 22.5923 (19) Å
  • β = 123.014 (2)°
  • V = 4475.7 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 100 K
  • 0.58 × 0.31 × 0.16 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.825, T max = 0.948
  • 22170 measured reflections
  • 8040 independent reflections
  • 6824 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.129
  • S = 1.08
  • 8040 reflections
  • 312 parameters
  • H-atom parameters constrained
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024785/ci5115sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024785/ci5115Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship. AMI is thankful to the Head of the Chemistry Department and the Director, National Institute of Technology-Karnataka for their encouragement. AMI also thanks USM for a partially sponsored research visit to the X-ray Crystallography Unit, School of Physics, USM.

supplementary crystallographic information

Comment

Methyl-2,6-bis[(5-bromo-4,6-dimethoxypyrimidin-2-yl)oxy]benzoate is a derivative of herbicide showing excellent herbicidal effects on annual and perennial weeds and high-safety crops, especially rice and wheat and is applied to paddy fields, ploughed fields and non-agricultural land (Koichiro et al., 1988, 1998). Most sulphonylurea herbicides and all pyrimidinylbenzoate herbicides (He et al., 2007) such as nicofulfuron, amidosulfuron, halopyrazosulfuron, ethoxysulfuron, pyriminobac-methyl and pyriftalid, possess 4,6-dimethoxypyrimidin-2-yl groups (Li et al., 2006), while sulfometuron-methyl, a kind of sulfonylurea, contains 4,6-dimethylpyrimidin-2-yl groups, which suggests that the two disubstituted pyrimidin-2-yl groups possess high biological activity (Gerorge, 1983).

In the title compound (Fig. 1), the two pyrimidine rings (C1-C4/N1/N2 and C11-C14/N3/N4) are essentially planar, with maximum deviations of 0.011 (1) and 0.007 (1) Å, respectively, at atoms N1 and N4. The central phenyl ring is inclined at dihedral angles of 66.68 (5) and 71.91 (6)°, respectively, with respect to the C1-C4/N1/N2 and C11-C14/N3/N4 pyrimidine rings. The bond lengths and angles are consistent with a closely related structure (Li & Luo, 2006).

In the crystal structure, intermolecular C16—H16A···N1 and C20—H20A···N3 hydrogen bonds (Table 1) link neighbouring molecules into a ribbon-like structure containing R22(26) ring motifs (Fig. 2, Bernstein et al., 1995), along the b axis. The interesting features of the crystal structure are the intermolecular short Cl···Cl [Cl1···Cl2iii = 3.4427 (6) Å; (iii) 1/2-x2, y-1/2, 1/2-z] and Cl···O [Cl1···O8iii = 3.1750 (11) and Cl2···O1iv = 3.1420 (9) Å; (iv) x, 2-y, z+1/2] interactions, which are shorter than the sum of the van der Waals radii of the relevant atoms, interconnecting the ribbons into two-dimensional networks parallel to the bc plane. The crystal structure is further stabilized by weak intermolecular π–π interactions [Cg1···Cg1v = 3.4552 (8) Å; (v) -x, y, -z+1/2; Cg1 is the centroid of C11-C14/N3/N4 pyrimidine ring].

Experimental

To a stirred solution of methyl-2,6-dihydroxybenzoate (0.50 g, 0.0026 mol) in acetonitrile (10 ml) was added potassium carbonate (1.00 g, 0.0070 mol) and 5-chloro-4,6-dimethoxy-2-(methylsulfonyl)pyrimidine (1.58 g, 0.0050 mol). The reaction mixture was heated to reflux for 4 h. Mass analysis showed completion of the reaction. The reaction mixture was filtered and the filtrate was concentrated. The residue was recrystallized using dichloromethane to obtain the title compound (yield: 67 %, m.p. 427–430 K).

Refinement

All H atoms were placed in the calculated positions, with C–H = 0.93–0.96 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30 % probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
Fig. 2.
Part of the crystal structure, viewed along an arbitrary axis, showing a molecular ribbon. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Fig. 3.
The crystal structure of the title compound, viewed along the b axis, showing two-dimensional networks parallel to the bc plane. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C20H18Cl2N4O8F(000) = 2112
Mr = 513.28Dx = 1.523 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9948 reflections
a = 29.354 (3) Åθ = 2.7–32.6°
b = 8.0485 (8) ŵ = 0.35 mm1
c = 22.5923 (19) ÅT = 100 K
β = 123.014 (2)°Block, colourless
V = 4475.7 (7) Å30.58 × 0.31 × 0.16 mm
Z = 8

Data collection

Bruker APEXII DUO CCD area-detector diffractometer8040 independent reflections
Radiation source: fine-focus sealed tube6824 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 32.6°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −44→43
Tmin = 0.825, Tmax = 0.948k = −12→12
22170 measured reflectionsl = −34→34

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0781P)2 + 1.9869P] where P = (Fo2 + 2Fc2)/3
8040 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = −0.55 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.307309 (11)0.57598 (4)0.096234 (18)0.02454 (8)
Cl20.082300 (12)0.91419 (4)0.399331 (14)0.01982 (8)
O10.11797 (3)0.91625 (11)0.04367 (4)0.01529 (16)
O20.04987 (3)0.57525 (11)0.15715 (4)0.01615 (16)
O30.28912 (4)0.93539 (12)0.08837 (5)0.02288 (19)
O40.20796 (3)0.42435 (11)0.07368 (5)0.01987 (17)
O50.16660 (4)0.88991 (14)0.18631 (5)0.0263 (2)
O60.16179 (4)0.62171 (15)0.20959 (5)0.0296 (2)
O70.07442 (4)0.55550 (12)0.37357 (4)0.01848 (17)
O80.07019 (4)1.06655 (11)0.27317 (4)0.01907 (17)
N10.20277 (4)0.92889 (13)0.06785 (5)0.01634 (18)
N20.16079 (4)0.66706 (13)0.05757 (5)0.01477 (17)
N30.06228 (4)0.56256 (13)0.26376 (5)0.01535 (18)
N40.06122 (4)0.82430 (13)0.21320 (5)0.01471 (17)
C10.24667 (4)0.84915 (16)0.07879 (6)0.0167 (2)
C20.25047 (4)0.67647 (16)0.08112 (6)0.0171 (2)
C30.20559 (4)0.58939 (15)0.07043 (5)0.0152 (2)
C40.16281 (4)0.83107 (15)0.05732 (5)0.01390 (19)
C50.07753 (4)0.82779 (14)0.04464 (5)0.01343 (18)
C60.02637 (4)0.83115 (16)−0.01690 (5)0.0172 (2)
H6A0.02070.8867−0.05650.021*
C7−0.01650 (4)0.75105 (17)−0.01925 (6)0.0206 (2)
H7A−0.05100.7533−0.06050.025*
C8−0.00804 (4)0.66766 (16)0.03972 (6)0.0179 (2)
H8A−0.03660.61330.03820.022*
C90.04341 (4)0.66658 (15)0.10068 (5)0.01393 (18)
C100.08739 (4)0.74658 (14)0.10524 (5)0.01335 (18)
C110.05844 (4)0.66055 (15)0.21417 (5)0.01376 (18)
C120.06937 (4)0.64190 (16)0.32011 (5)0.01463 (19)
C130.07199 (4)0.81463 (15)0.32568 (5)0.01496 (19)
C140.06775 (4)0.90169 (15)0.26965 (5)0.01476 (19)
C150.28520 (6)1.11370 (19)0.08786 (9)0.0296 (3)
H15A0.31511.16190.08770.044*
H15B0.28631.14970.12910.044*
H15C0.25161.14840.04640.044*
C160.16177 (5)0.33858 (18)0.06581 (8)0.0262 (3)
H16A0.16950.22180.07350.039*
H16B0.13060.35620.01900.039*
H16C0.15450.38070.09970.039*
C170.14212 (4)0.74193 (17)0.17246 (6)0.0187 (2)
C180.22073 (7)0.8981 (3)0.24900 (9)0.0473 (5)
H18A0.23531.00760.25340.071*
H18B0.24350.81820.24560.071*
H18C0.21940.87400.28970.071*
C190.07186 (6)0.37652 (18)0.36714 (6)0.0226 (2)
H19A0.07350.32850.40720.034*
H19B0.10190.33730.36530.034*
H19C0.03840.34490.32470.034*
C200.07386 (7)1.15252 (18)0.21994 (7)0.0286 (3)
H20A0.07711.26980.22920.043*
H20B0.04181.13110.17430.043*
H20C0.10521.11400.22090.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01660 (12)0.02313 (16)0.03475 (16)0.00517 (10)0.01454 (11)0.00213 (12)
Cl20.02636 (14)0.02056 (15)0.01647 (12)−0.00313 (10)0.01420 (10)−0.00502 (9)
O10.0144 (3)0.0143 (4)0.0208 (3)0.0030 (3)0.0119 (3)0.0037 (3)
O20.0246 (4)0.0139 (4)0.0150 (3)−0.0023 (3)0.0141 (3)−0.0023 (3)
O30.0179 (4)0.0186 (4)0.0352 (5)0.0000 (3)0.0164 (3)0.0014 (4)
O40.0170 (3)0.0131 (4)0.0280 (4)0.0012 (3)0.0113 (3)−0.0011 (3)
O50.0220 (4)0.0305 (5)0.0185 (4)−0.0102 (4)0.0060 (3)−0.0027 (4)
O60.0222 (4)0.0338 (6)0.0234 (4)0.0043 (4)0.0064 (3)0.0104 (4)
O70.0266 (4)0.0176 (4)0.0158 (3)−0.0012 (3)0.0144 (3)0.0008 (3)
O80.0267 (4)0.0131 (4)0.0175 (3)0.0004 (3)0.0121 (3)−0.0015 (3)
N10.0160 (4)0.0151 (5)0.0205 (4)0.0010 (3)0.0116 (3)0.0012 (3)
N20.0148 (4)0.0142 (4)0.0162 (3)0.0020 (3)0.0090 (3)0.0003 (3)
N30.0185 (4)0.0154 (5)0.0155 (4)−0.0007 (3)0.0114 (3)−0.0009 (3)
N40.0179 (4)0.0139 (4)0.0139 (3)0.0006 (3)0.0097 (3)−0.0008 (3)
C10.0146 (4)0.0176 (5)0.0190 (4)−0.0001 (4)0.0100 (3)0.0005 (4)
C20.0141 (4)0.0174 (5)0.0206 (4)0.0033 (4)0.0100 (3)0.0008 (4)
C30.0153 (4)0.0142 (5)0.0156 (4)0.0023 (4)0.0081 (3)0.0002 (4)
C40.0135 (4)0.0156 (5)0.0140 (4)0.0023 (4)0.0083 (3)0.0011 (4)
C50.0142 (4)0.0135 (5)0.0155 (4)0.0013 (4)0.0100 (3)−0.0001 (4)
C60.0165 (4)0.0212 (6)0.0144 (4)0.0016 (4)0.0088 (3)0.0019 (4)
C70.0154 (4)0.0270 (7)0.0167 (4)−0.0003 (4)0.0071 (3)0.0010 (4)
C80.0162 (4)0.0211 (6)0.0182 (4)−0.0024 (4)0.0105 (4)−0.0020 (4)
C90.0178 (4)0.0133 (5)0.0137 (4)−0.0001 (4)0.0105 (3)−0.0011 (4)
C100.0144 (4)0.0136 (5)0.0130 (4)0.0007 (3)0.0081 (3)−0.0009 (3)
C110.0146 (4)0.0154 (5)0.0136 (4)−0.0007 (4)0.0092 (3)−0.0020 (4)
C120.0146 (4)0.0177 (5)0.0135 (4)−0.0005 (4)0.0089 (3)0.0000 (4)
C130.0171 (4)0.0161 (5)0.0139 (4)−0.0004 (4)0.0099 (3)−0.0025 (4)
C140.0153 (4)0.0142 (5)0.0149 (4)0.0006 (4)0.0083 (3)−0.0013 (4)
C150.0243 (6)0.0186 (6)0.0490 (8)−0.0024 (5)0.0220 (6)0.0008 (6)
C160.0207 (5)0.0153 (6)0.0407 (7)−0.0013 (4)0.0155 (5)−0.0015 (5)
C170.0161 (4)0.0242 (6)0.0156 (4)−0.0012 (4)0.0085 (3)0.0002 (4)
C180.0290 (7)0.0602 (13)0.0281 (7)−0.0201 (8)−0.0003 (6)−0.0017 (7)
C190.0323 (6)0.0183 (6)0.0214 (5)−0.0017 (5)0.0173 (4)0.0016 (5)
C200.0497 (8)0.0162 (6)0.0220 (5)0.0018 (6)0.0209 (5)0.0020 (5)

Geometric parameters (Å, °)

Cl1—C21.7126 (11)C5—C61.3834 (14)
Cl2—C131.7187 (11)C5—C101.3978 (14)
O1—C41.3621 (12)C6—C71.3889 (16)
O1—C51.3944 (13)C6—H6A0.93
O2—C111.3569 (12)C7—C81.3881 (16)
O2—C91.3929 (13)C7—H7A0.93
O3—C11.3370 (14)C8—C91.3824 (14)
O3—C151.4393 (18)C8—H8A0.93
O4—C31.3301 (14)C9—C101.3952 (14)
O4—C161.4436 (15)C10—C171.4934 (15)
O5—C171.3370 (16)C12—C131.3943 (17)
O5—C181.4432 (17)C13—C141.3918 (15)
O6—C171.2023 (16)C15—H15A0.96
O7—C121.3301 (13)C15—H15B0.96
O7—C191.4457 (16)C15—H15C0.96
O8—C141.3288 (14)C16—H16A0.96
O8—C201.4415 (15)C16—H16B0.96
N1—C41.3224 (14)C16—H16C0.96
N1—C11.3365 (14)C18—H18A0.96
N2—C41.3215 (16)C18—H18B0.96
N2—C31.3372 (14)C18—H18C0.96
N3—C111.3238 (14)C19—H19A0.96
N3—C121.3353 (13)C19—H19B0.96
N4—C111.3214 (16)C19—H19C0.96
N4—C141.3360 (13)C20—H20A0.96
C1—C21.3930 (18)C20—H20B0.96
C2—C31.3923 (15)C20—H20C0.96
C4—O1—C5117.72 (9)N3—C11—O2112.86 (10)
C11—O2—C9117.70 (9)O7—C12—N3119.87 (11)
C1—O3—C15116.92 (10)O7—C12—C13117.78 (9)
C3—O4—C16116.97 (9)N3—C12—C13122.35 (10)
C17—O5—C18115.74 (13)C14—C13—C12116.54 (9)
C12—O7—C19117.10 (9)C14—C13—Cl2121.81 (9)
C14—O8—C20117.10 (9)C12—C13—Cl2121.61 (8)
C4—N1—C1114.76 (11)O8—C14—N4119.85 (10)
C4—N2—C3115.27 (9)O8—C14—C13118.24 (10)
C11—N3—C12114.78 (10)N4—C14—C13121.92 (11)
C11—N4—C14115.29 (9)O3—C15—H15A109.5
N1—C1—O3120.02 (11)O3—C15—H15B109.5
N1—C1—C2122.37 (10)H15A—C15—H15B109.5
O3—C1—C2117.60 (10)O3—C15—H15C109.5
C3—C2—C1116.54 (10)H15A—C15—H15C109.5
C3—C2—Cl1121.59 (10)H15B—C15—H15C109.5
C1—C2—Cl1121.87 (9)O4—C16—H16A109.5
O4—C3—N2119.63 (10)O4—C16—H16B109.5
O4—C3—C2118.50 (10)H16A—C16—H16B109.5
N2—C3—C2121.87 (11)O4—C16—H16C109.5
N2—C4—N1129.15 (10)H16A—C16—H16C109.5
N2—C4—O1117.63 (9)H16B—C16—H16C109.5
N1—C4—O1113.22 (10)O6—C17—O5124.13 (11)
C6—C5—O1116.19 (9)O6—C17—C10124.84 (12)
C6—C5—C10121.70 (9)O5—C17—C10111.03 (10)
O1—C5—C10122.04 (9)O5—C18—H18A109.5
C5—C6—C7119.62 (10)O5—C18—H18B109.5
C5—C6—H6A120.2H18A—C18—H18B109.5
C7—C6—H6A120.2O5—C18—H18C109.5
C8—C7—C6120.21 (10)H18A—C18—H18C109.5
C8—C7—H7A119.9H18B—C18—H18C109.5
C6—C7—H7A119.9O7—C19—H19A109.5
C9—C8—C7119.10 (10)O7—C19—H19B109.5
C9—C8—H8A120.4H19A—C19—H19B109.5
C7—C8—H8A120.4O7—C19—H19C109.5
C8—C9—O2116.45 (9)H19A—C19—H19C109.5
C8—C9—C10122.36 (10)H19B—C19—H19C109.5
O2—C9—C10121.14 (9)O8—C20—H20A109.5
C9—C10—C5117.01 (9)O8—C20—H20B109.5
C9—C10—C17120.20 (9)H20A—C20—H20B109.5
C5—C10—C17122.79 (9)O8—C20—H20C109.5
N4—C11—N3129.10 (10)H20A—C20—H20C109.5
N4—C11—O2118.04 (9)H20B—C20—H20C109.5
C4—N1—C1—O3178.40 (10)C8—C9—C10—C17179.84 (11)
C4—N1—C1—C2−1.96 (15)O2—C9—C10—C17−2.78 (16)
C15—O3—C1—N11.42 (16)C6—C5—C10—C90.94 (16)
C15—O3—C1—C2−178.24 (11)O1—C5—C10—C9177.93 (10)
N1—C1—C2—C30.85 (16)C6—C5—C10—C17−179.62 (11)
O3—C1—C2—C3−179.50 (10)O1—C5—C10—C17−2.62 (17)
N1—C1—C2—Cl1−179.21 (8)C14—N4—C11—N3−1.47 (16)
O3—C1—C2—Cl10.44 (15)C14—N4—C11—O2177.68 (9)
C16—O4—C3—N2−2.55 (15)C12—N3—C11—N40.79 (16)
C16—O4—C3—C2177.03 (10)C12—N3—C11—O2−178.39 (9)
C4—N2—C3—O4178.15 (10)C9—O2—C11—N4−1.34 (13)
C4—N2—C3—C2−1.42 (14)C9—O2—C11—N3177.94 (9)
C1—C2—C3—O4−178.62 (10)C19—O7—C12—N30.01 (14)
Cl1—C2—C3—O41.43 (14)C19—O7—C12—C13−179.72 (10)
C1—C2—C3—N20.95 (15)C11—N3—C12—O7−179.16 (9)
Cl1—C2—C3—N2−178.99 (8)C11—N3—C12—C130.55 (14)
C3—N2—C4—N10.15 (16)O7—C12—C13—C14178.67 (9)
C3—N2—C4—O1179.26 (9)N3—C12—C13—C14−1.04 (15)
C1—N1—C4—N21.52 (16)O7—C12—C13—Cl20.85 (14)
C1—N1—C4—O1−177.62 (9)N3—C12—C13—Cl2−178.87 (8)
C5—O1—C4—N212.29 (13)C20—O8—C14—N4−9.19 (15)
C5—O1—C4—N1−168.46 (9)C20—O8—C14—C13170.99 (11)
C4—O1—C5—C6−121.76 (11)C11—N4—C14—O8−179.01 (10)
C4—O1—C5—C1061.09 (13)C11—N4—C14—C130.81 (14)
O1—C5—C6—C7−177.67 (11)C12—C13—C14—O8−179.86 (10)
C10—C5—C6—C7−0.51 (18)Cl2—C13—C14—O8−2.04 (14)
C5—C6—C7—C8−0.20 (19)C12—C13—C14—N40.31 (15)
C6—C7—C8—C90.43 (19)Cl2—C13—C14—N4178.14 (8)
C7—C8—C9—O2−177.46 (11)C18—O5—C17—O62.3 (2)
C7—C8—C9—C100.03 (18)C18—O5—C17—C10−177.92 (13)
C11—O2—C9—C8−110.10 (11)C9—C10—C17—O641.16 (17)
C11—O2—C9—C1072.38 (13)C5—C10—C17—O6−138.26 (13)
C8—C9—C10—C5−0.70 (16)C9—C10—C17—O5−138.63 (11)
O2—C9—C10—C5176.68 (10)C5—C10—C17—O541.94 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16A···N1i0.962.583.5018 (19)161
C20—H20A···N3ii0.962.593.5148 (19)161

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5115).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Gerorge, L. (1983). US Patent No. 4 394 506.
  • He, Y.-Z., Li, Y.-X., Zhu, X.-L., Xi, Z., Niu, C., Wan, J., Zhang, L. & Yang, G.-F. (2007). J. Chem. Inf. Model.47, 2335–2344. [PubMed]
  • Koichiro, S., Shoji, K., Yasubumi, T., Takeshige, M. & Ryo, Y. (1988). Jpn Patent No. JP 88 132 167; Chem. Abstr. (1998), 112, 216956.
  • Koichiro, S., Shoji, K., Yasubumi, T., Takeshige, M. & Ryo, Y. (1998). Chem. Abstr.112, 216956.
  • Li, Y.-X. & Luo, Y.-P. (2006). Acta Cryst. E62, o1323–o1325.
  • Li, Y.-X., Luo, Y.-P., Xi, Z., Niu, C., He, Y.-Z. & Yang, G.-F. (2006). J. Agric. Food Chem.54, 9135–9139. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography