PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m755.
Published online 2010 June 5. doi:  10.1107/S1600536810020635
PMCID: PMC3006846

Diiodido[4′-(4-pyrid­yl)-2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′]copper(II)

Abstract

The CuII atom in the title compound, [CuI2(C20H14N4)], has a distorted square-pyramidal coordination formed by the N atoms of the tridentate 4′-(4-pyrid­yl)-2,2′:6′2′′-terpyridine (pyterpy) ligand and two I atoms; one of the I atoms is in the apical position. In contrast to other known square-pyramidal diiodido- and dibromidocopper complexes of the pyterpy ligand in which metal–halogen distances are significantly different, in the title compound the apical and equatorial Cu—I bonds are almost identical [2.6141 (8) and 2.6025 (8) Å, respectively].

Related literature

For related structures, see: Feng et al. (2006 [triangle]); Hou et al. (2004 [triangle], 2005 [triangle]); Kutoglu et al. (1991 [triangle]); Shi et al. (2007 [triangle]); Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m755-scheme1.jpg

Experimental

Crystal data

  • [CuI2(C20H14N4)]
  • M r = 627.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m755-efi1.jpg
  • a = 11.9882 (8) Å
  • b = 14.642 (1) Å
  • c = 12.0291 (8) Å
  • β = 110.240 (1)°
  • V = 1981.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.23 mm−1
  • T = 294 K
  • 0.25 × 0.23 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.361, T max = 0.467
  • 11694 measured reflections
  • 3894 independent reflections
  • 3670 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.091
  • S = 1.30
  • 3894 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.97 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020635/ya2124sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020635/ya2124Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation for Young Researchers of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education (grant No. 2009QN05).

supplementary crystallographic information

Comment

Terpyridine and its derivatives have been recently receiving increasing attention not only because of their versatility as building blocks in supramolecular assemblies, but also due to the interesting electronic, photonic and magnetic properties of their transition metal complexes.

4'-(4-Pyridyl)-2,2':6'2''-terpyridine (pyterpy) belongs to this group of ligands and has been used to construct a great variety of structurally interesting entities, such as mononuclear complexes (Feng et al., 2006; Hou et al., 2004; Kutoglu et al., 1991; Shi et al., 2007), grid-type coordination polymers (Hou et al., 2005), and self-catenated networks (Zhang et al., 2007).

The structure of the title compound is shown in Fig. 1. The Cu1 atom has a distorted square-pyramidal coordination formed by the N2, N3 and N4 atoms of the pyterpy ligand and the I1 and I2 atoms. The I2 atom occupies the apical position, with bond angles of I2-Cu1-I1, I2-Cu1-N1, I2-Cu1-N2 and I2-Cu1-N3 being equal to 110.98 (3)°, 102.6 (1)°, 107.9 (1)° and 97.3 (1)° respectively, and the widest bond angles in the coordination sphere of the Cu1 atom being I1-Cu1-N3 [141.1 (1)°] and N2-Cu1-N4 [146.4 (2)°].

Rather unexpectedly, in contrast with other diiodo- and dibromo-copper complexes of 2,2':6'2''-terpyridine (terpy) with square-pyramidal coordination (Hou et al., 2004; Feng et al., 2006), where significant difference between the apical and equatorial metal-halogen bonds was observed, in the title compound the Cu1-I1 and Cu1-I2 bonds are almost identical [2.6025 (8) Å and 2.6141 (8) Å respectively]. It is true, however, that the wide angles in the copper coordination sphere (I1-Cu1-N3 and N2-Cu1-N4) are significantly narrower in the title compound than in other terpy complexes with square-pyramidal configuration (see references above), which puts this compound much farther on the transition path to trigonal bipyramid than the mentioned above literature complexes.

The Cu1-N3 bond with the N atom of the central ring of the pyterpy ligand [2.104 (4) Å] is noticeably shorter, than the Cu1-N2 and Cu1-N4 bonds [2.206 (5) Å and 2.199 (5) Å] involving the flanking pyridine rings of the pyterpy ligand. This pattern in the Cu-N bonds, is quite typical for the terpy complexes (see Hou et al., 2004; Feng et al., 2006; Kutoglu et al., 1991).

Experimental

The mixture of CuI (0.0190 g, 0.1 mmol), 4'-(4-pyridyl)-2,2':6'2''-terpyridine (pyterpy) (0.0155 g, 0.05 mmol), saturated KI solution (3 ml) and water (6 ml) were placed and sealed in a 10 ml Teflon-lined stainless steel reactor and heated to 140 °C for 72 h, then cooled down to room temperature at a rate of 2°C/20 min. Single crystals suitable for X-ray diffraction were obtained in the form of black bars in ca 40% yield.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å(aromatic) and Uĩso(H) = 1.2Ueq(C)

Figures

Fig. 1.
The asymmetric unit of the title compound showing 30% probability ellipsoids.

Crystal data

[CuI2(C20H14N4)]F(000) = 1188
Mr = 627.69Dx = 2.105 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1523 reflections
a = 11.9882 (8) Åθ = 1.9–20.3°
b = 14.642 (1) ŵ = 4.23 mm1
c = 12.0291 (8) ÅT = 294 K
β = 110.240 (1)°Block, black
V = 1981.1 (2) Å30.25 × 0.23 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3894 independent reflections
Radiation source: fine-focus sealed tube3670 reflections with I > 2σ(I)
graphiteRint = 0.028
phi and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→13
Tmin = 0.361, Tmax = 0.467k = −18→17
11694 measured reflectionsl = −8→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.30w = 1/[σ2(Fo2) + (0.0189P)2 + 6.8023P] where P = (Fo2 + 2Fc2)/3
3894 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = −0.97 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.73294 (6)0.14757 (4)0.92788 (6)0.02734 (17)
C11.1049 (6)−0.1207 (5)0.5460 (6)0.0409 (15)
H11.0765−0.17170.49860.049*
C21.0403 (5)−0.0897 (4)0.6143 (5)0.0346 (14)
H20.9724−0.12060.61420.042*
C31.0786 (5)−0.0118 (4)0.6828 (5)0.0288 (12)
C41.1830 (5)0.0295 (4)0.6800 (5)0.0343 (13)
H41.21260.08180.72410.041*
C51.2409 (6)−0.0091 (4)0.6106 (6)0.0411 (16)
H51.31080.01870.61080.049*
C61.0106 (5)0.0250 (4)0.7539 (5)0.0278 (12)
C70.9499 (5)−0.0329 (4)0.8056 (5)0.0304 (13)
H70.9566−0.09590.80060.036*
C80.8799 (5)0.0042 (4)0.8644 (5)0.0253 (11)
C90.8078 (5)−0.0505 (4)0.9195 (5)0.0279 (12)
C100.8152 (5)−0.1438 (4)0.9284 (5)0.0347 (13)
H100.8651−0.17600.89810.042*
C110.7474 (6)−0.1892 (4)0.9830 (6)0.0421 (16)
H110.7519−0.25230.99160.050*
C120.6724 (6)−0.1390 (4)1.0249 (6)0.0442 (16)
H120.6249−0.16771.06120.053*
C130.6698 (6)−0.0452 (4)1.0115 (6)0.0404 (15)
H130.6197−0.01151.04000.048*
C140.8092 (6)0.3530 (4)0.9194 (6)0.0383 (14)
H140.75410.36450.95630.046*
C150.8637 (6)0.4263 (4)0.8878 (6)0.0391 (15)
H150.84460.48580.90160.047*
C160.9473 (6)0.4096 (4)0.8354 (6)0.0417 (16)
H160.98630.45770.81400.050*
C170.9724 (6)0.3199 (4)0.8149 (6)0.0384 (15)
H171.02880.30690.78010.046*
C180.9120 (5)0.2504 (4)0.8473 (5)0.0271 (12)
C190.9295 (5)0.1515 (4)0.8282 (5)0.0259 (12)
C201.0022 (5)0.1191 (4)0.7688 (5)0.0298 (12)
H201.04480.15950.73920.036*
I10.69282 (4)0.20067 (3)1.11708 (4)0.04474 (14)
I20.54357 (4)0.16793 (3)0.73907 (4)0.04683 (14)
N11.2047 (5)−0.0826 (4)0.5436 (5)0.0455 (14)
N20.7357 (4)−0.0010 (3)0.9595 (4)0.0310 (11)
N30.8694 (4)0.0951 (3)0.8736 (4)0.0267 (10)
N40.8313 (4)0.2670 (3)0.8997 (4)0.0298 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0286 (4)0.0248 (3)0.0331 (4)0.0006 (3)0.0162 (3)−0.0012 (3)
C10.046 (4)0.039 (4)0.040 (4)0.006 (3)0.018 (3)−0.001 (3)
C20.037 (3)0.030 (3)0.041 (4)0.003 (2)0.019 (3)−0.003 (3)
C30.031 (3)0.026 (3)0.031 (3)0.007 (2)0.012 (3)0.005 (2)
C40.036 (3)0.031 (3)0.034 (3)0.002 (3)0.011 (3)0.007 (3)
C50.038 (3)0.043 (4)0.052 (4)0.010 (3)0.027 (3)0.013 (3)
C60.027 (3)0.029 (3)0.029 (3)0.001 (2)0.011 (2)0.001 (2)
C70.038 (3)0.020 (3)0.032 (3)0.003 (2)0.011 (3)−0.001 (2)
C80.026 (3)0.023 (3)0.025 (3)−0.001 (2)0.006 (2)0.003 (2)
C90.025 (3)0.027 (3)0.029 (3)−0.003 (2)0.005 (2)−0.002 (2)
C100.036 (3)0.032 (3)0.038 (3)−0.002 (2)0.016 (3)0.002 (3)
C110.050 (4)0.026 (3)0.054 (4)−0.011 (3)0.022 (3)0.006 (3)
C120.045 (4)0.044 (4)0.054 (4)−0.014 (3)0.030 (3)0.003 (3)
C130.038 (3)0.040 (4)0.048 (4)−0.004 (3)0.022 (3)−0.003 (3)
C140.043 (4)0.032 (3)0.044 (4)0.005 (3)0.019 (3)−0.003 (3)
C150.043 (4)0.023 (3)0.049 (4)−0.001 (3)0.014 (3)−0.001 (3)
C160.043 (4)0.024 (3)0.060 (4)−0.007 (3)0.019 (3)0.006 (3)
C170.041 (4)0.029 (3)0.051 (4)0.000 (3)0.023 (3)0.002 (3)
C180.024 (3)0.025 (3)0.031 (3)0.001 (2)0.008 (2)0.004 (2)
C190.030 (3)0.023 (3)0.028 (3)−0.002 (2)0.014 (2)0.003 (2)
C200.035 (3)0.025 (3)0.031 (3)−0.005 (2)0.014 (3)0.003 (2)
I10.0565 (3)0.0431 (3)0.0441 (3)0.0026 (2)0.0296 (2)−0.0038 (2)
I20.0424 (3)0.0349 (2)0.0504 (3)−0.00135 (18)−0.0003 (2)0.0007 (2)
N10.054 (4)0.041 (3)0.052 (4)0.013 (3)0.032 (3)0.001 (3)
N20.033 (3)0.027 (2)0.038 (3)0.001 (2)0.019 (2)0.000 (2)
N30.029 (2)0.025 (2)0.027 (2)0.0012 (19)0.010 (2)0.0025 (19)
N40.028 (2)0.027 (2)0.036 (3)−0.0025 (19)0.013 (2)0.000 (2)

Geometric parameters (Å, °)

Cu1—N32.104 (4)C9—C101.370 (8)
Cu1—N42.199 (5)C10—C111.380 (8)
Cu1—N22.206 (5)C10—H100.9300
Cu1—I12.6025 (8)C11—C121.383 (9)
Cu1—I22.6141 (8)C11—H110.9300
C1—N11.330 (8)C12—C131.381 (9)
C1—C21.386 (8)C12—H120.9300
C1—H10.9300C13—N21.333 (7)
C2—C31.389 (8)C13—H130.9300
C2—H20.9300C14—N41.325 (7)
C3—C41.401 (8)C14—C151.376 (9)
C3—C61.473 (7)C14—H140.9300
C4—C51.379 (8)C15—C161.378 (9)
C4—H40.9300C15—H150.9300
C5—N11.324 (9)C16—C171.388 (8)
C5—H50.9300C16—H160.9300
C6—C71.396 (8)C17—C181.381 (8)
C6—C201.397 (8)C17—H170.9300
C7—C81.382 (8)C18—N41.347 (7)
C7—H70.9300C18—C191.493 (7)
C8—N31.345 (7)C19—N31.331 (6)
C8—C91.492 (7)C19—C201.387 (8)
C9—N21.340 (7)C20—H200.9300
N3—Cu1—N474.14 (17)C10—C11—C12118.8 (6)
N3—Cu1—N274.17 (17)C10—C11—H11120.6
N4—Cu1—N2146.45 (17)C12—C11—H11120.6
N3—Cu1—I1141.15 (13)C13—C12—C11118.5 (6)
N4—Cu1—I199.68 (13)C13—C12—H12120.7
N2—Cu1—I198.03 (13)C11—C12—H12120.7
N3—Cu1—I2107.86 (13)N2—C13—C12123.0 (6)
N4—Cu1—I297.26 (13)N2—C13—H13118.5
N2—Cu1—I2102.65 (13)C12—C13—H13118.5
I1—Cu1—I2110.98 (3)N4—C14—C15123.3 (6)
N1—C1—C2124.5 (6)N4—C14—H14118.4
N1—C1—H1117.7C15—C14—H14118.4
C2—C1—H1117.7C14—C15—C16118.5 (6)
C1—C2—C3118.9 (6)C14—C15—H15120.7
C1—C2—H2120.6C16—C15—H15120.7
C3—C2—H2120.6C15—C16—C17119.1 (6)
C2—C3—C4117.0 (5)C15—C16—H16120.5
C2—C3—C6120.7 (5)C17—C16—H16120.5
C4—C3—C6122.3 (5)C18—C17—C16118.7 (6)
C5—C4—C3118.7 (6)C18—C17—H17120.7
C5—C4—H4120.7C16—C17—H17120.7
C3—C4—H4120.7N4—C18—C17122.1 (5)
N1—C5—C4125.0 (6)N4—C18—C19114.1 (5)
N1—C5—H5117.5C17—C18—C19123.8 (5)
C4—C5—H5117.5N3—C19—C20121.7 (5)
C7—C6—C20118.0 (5)N3—C19—C18114.4 (5)
C7—C6—C3121.0 (5)C20—C19—C18123.9 (5)
C20—C6—C3121.0 (5)C19—C20—C6119.3 (5)
C8—C7—C6119.4 (5)C19—C20—H20120.4
C8—C7—H7120.3C6—C20—H20120.4
C6—C7—H7120.3C5—N1—C1115.9 (5)
N3—C8—C7121.5 (5)C13—N2—C9117.8 (5)
N3—C8—C9114.2 (5)C13—N2—Cu1125.8 (4)
C7—C8—C9124.3 (5)C9—N2—Cu1116.4 (4)
N2—C9—C10123.0 (5)C19—N3—C8120.0 (5)
N2—C9—C8114.4 (5)C19—N3—Cu1119.4 (3)
C10—C9—C8122.6 (5)C8—N3—Cu1119.5 (4)
C9—C10—C11119.0 (6)C14—N4—C18118.4 (5)
C9—C10—H10120.5C14—N4—Cu1125.3 (4)
C11—C10—H10120.5C18—N4—Cu1116.0 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2124).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Feng, H., Zhou, X.-P., Wu, T., Li, D., Yin, Y.-G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027–4035.
  • Hou, L., Li, D., Shi, W.-J., Yin, Y.-G. & Ng, S. W. (2005). Inorg. Chem.44, 7825–7832. [PubMed]
  • Hou, L., Li, D., Wu, T., Yin, Y.-G. & Ng, S. W. (2004). Acta Cryst. E60, m1181–m1182.
  • Kutoglu, A., Allmann, R., Folgado, J.-V., Atanasov, M. & Reinen, D. (1991). Z. Naturforsch. Teil B, 46, 1193–1199.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, W.-J., Hou, L., Li, D. & Yin, Y.-G. (2007). Inorg. Chim. Acta, 360, 588–598.
  • Zhang, S.-S., Zhan, S.-Z., Li, M., Peng, R. & Li, D. (2007). Inorg. Chem.46, 4365–4367. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography