PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1573.
Published online 2010 June 5. doi:  10.1107/S1600536810018726
PMCID: PMC3006844

4-(Carboxy­meth­oxy)anilinium bromide

Abstract

In the title hydro­bromide salt, C8H10NO3 +·Br, the positive charge resides on the N atom and the carboxyl –CO2 end of the cation carries an H atom. In the crystal, N—H(...)Br, O—H(...)Br and N—H(...)O hydrogen bonds link the cations and anions, forming a ladder propagating along the a axis.

Related literature

For background to phase transition materials, see: Jain et al. (2008 [triangle]); Korfer & Fusee et al. (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1573-scheme1.jpg

Experimental

Crystal data

  • C8H10NO3 +·Br
  • M r = 248.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1573-efi1.jpg
  • a = 6.0182 (12) Å
  • b = 9.6025 (19) Å
  • c = 16.514 (3) Å
  • β = 94.47 (3)°
  • V = 951.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.30 mm−1
  • T = 293 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.5, T max = 0.5
  • 9589 measured reflections
  • 2178 independent reflections
  • 1539 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.125
  • S = 0.80
  • 2178 reflections
  • 134 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.85 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018726/ng2777sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018726/ng2777Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

supplementary crystallographic information

Comment

We are interested in the dielectric-ferroelectric materials. Recent studies have revealed that small molecular compounds which have one or more amidogens

probably have this kind of character(Jain et al., 2008 ; Korfer & Fusee et al., 1988). Thus, we want to find aromatic compounds containing amidogens having dielectric-ferroelectric properties. As part of our ongoing studies, we report here the crystal structure of the title compound, The dielectric constant of 2-(4-aminophenoxy) acetic acid bromide compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point (478k-480k) of the compound, the dielectric constant(4.51-8.33) as a function of temperature also goes smoothly, and there is no dielectric anomaly observed, so this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range.

The asymmetric unit of the title compound contains one 2-(4-aminophenoxy) acetic acid cation and one bromide anion(fig 1). The non-H atoms of the 2-(4-aminophenoxy) acetic acid are essentially coplanar. In the crystal structure, intermolecular N—H···Br hydrogen bonds link cations and anions to form one-dimensional ladder propagating wavily along the a axis direction(fig 2).

Experimental

ethyl 2-(4-aminophenoxy)acetate (1.95 g) and methanol(30 ml) were added to a round-bottomed flask with a magnetic stirrer bar, then hydrogen chloride(36%) 1.02 g was added into the mixture. The mixture was stirred for 4 h at room temperature. Colourless plate-like crystals of (I) were grown from an ethanol solution of the title compound by slow evaporation at room temperature.

Refinement

Positional parameters of all the H atoms bonded to C atom were calculated geometrically with C—H = 0.93 to 0.93 \%A, with Uĩso~(H) = 1.2U~eq~(Caromatic,). All other H atom were locatd in a difference Fourier map and refined freely.

Figures

Fig. 1.
The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C8H10NO3+·BrF(000) = 496
Mr = 248.08Dx = 1.732 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 0 reflections
a = 6.0182 (12) Åθ = 3.3–27.5°
b = 9.6025 (19) ŵ = 4.30 mm1
c = 16.514 (3) ÅT = 293 K
β = 94.47 (3)°Prism, colourless
V = 951.4 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer2178 independent reflections
Radiation source: fine-focus sealed tube1539 reflections with I > 2σ(I)
graphiteRint = 0.062
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = −7→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −12→12
Tmin = 0.5, Tmax = 0.5l = −21→21
9589 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 0.80w = 1/[σ2(Fo2) + (0.0891P)2 + 0.5552P] where P = (Fo2 + 2Fc2)/3
2178 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.85 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.41951 (5)0.75195 (3)0.28076 (2)0.04135 (18)
N10.9214 (5)0.6075 (4)0.29003 (18)0.0390 (7)
O11.0375 (4)0.1877 (3)0.52465 (15)0.0447 (6)
C40.7915 (5)0.4697 (3)0.40446 (19)0.0329 (7)
H4A0.66210.52300.40210.039*
C50.9527 (5)0.4943 (3)0.35062 (19)0.0313 (7)
O21.3878 (4)−0.0723 (3)0.61539 (16)0.0435 (6)
C71.1796 (5)0.3112 (4)0.4098 (2)0.0336 (7)
H7A1.30850.25750.41180.040*
C81.2172 (5)0.0143 (4)0.6064 (2)0.0349 (7)
O31.0656 (4)0.0186 (3)0.64965 (16)0.0521 (7)
C100.8249 (5)0.3660 (3)0.46127 (19)0.0344 (7)
H10A0.71770.34830.49760.041*
C111.1450 (5)0.4159 (3)0.35252 (19)0.0351 (7)
H11A1.25070.43320.31560.042*
C121.0192 (6)0.2874 (3)0.4644 (2)0.0314 (7)
C131.2343 (5)0.1059 (3)0.53319 (19)0.0367 (7)
H13A1.36460.16540.54070.044*
H13B1.24720.04950.48510.044*
H110.780 (7)0.650 (5)0.292 (3)0.080 (14)*
H121.032 (7)0.683 (5)0.299 (3)0.076 (14)*
H130.931 (6)0.564 (4)0.241 (3)0.063 (13)*
H141.371 (6)−0.113 (4)0.656 (2)0.052 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0343 (3)0.0443 (3)0.0452 (3)0.00119 (14)0.00119 (17)−0.00404 (14)
N10.0360 (17)0.0490 (19)0.0323 (17)0.0081 (14)0.0056 (13)0.0041 (14)
O10.0443 (14)0.0448 (14)0.0472 (16)0.0106 (12)0.0167 (11)0.0142 (12)
C40.0282 (16)0.0339 (17)0.0367 (18)−0.0005 (14)0.0039 (13)−0.0070 (14)
C50.0325 (16)0.0333 (17)0.0276 (16)0.0002 (13)−0.0002 (13)−0.0009 (13)
O20.0461 (15)0.0446 (15)0.0407 (15)0.0091 (12)0.0089 (11)0.0073 (12)
C70.0310 (17)0.0349 (17)0.0354 (18)0.0039 (14)0.0065 (13)−0.0032 (14)
C80.0360 (17)0.0345 (17)0.0338 (18)−0.0002 (15)0.0001 (14)−0.0032 (14)
O30.0454 (14)0.0727 (19)0.0403 (15)0.0104 (14)0.0163 (12)0.0135 (13)
C100.0267 (15)0.0396 (18)0.0380 (18)−0.0051 (14)0.0085 (13)−0.0043 (14)
C110.0313 (16)0.0411 (18)0.0342 (17)0.0028 (14)0.0104 (13)−0.0009 (14)
C120.0320 (16)0.0307 (15)0.0317 (18)−0.0029 (14)0.0038 (13)−0.0019 (13)
C130.0374 (18)0.0396 (18)0.0336 (18)0.0029 (15)0.0065 (14)0.0040 (14)

Geometric parameters (Å, °)

N1—C51.479 (4)O2—H140.78 (4)
N1—H110.95 (4)C7—C121.390 (4)
N1—H120.99 (5)C7—C111.385 (5)
N1—H130.91 (4)C7—H7A0.9300
O1—C121.379 (4)C8—O31.202 (4)
O1—C131.419 (4)C8—C131.505 (4)
C4—C101.372 (4)C10—C121.389 (5)
C4—C51.386 (4)C10—H10A0.9300
C4—H4A0.9300C11—H11A0.9300
C5—C111.379 (4)C13—H13A0.9700
O2—C81.321 (4)C13—H13B0.9700
C5—N1—H11111 (3)O3—C8—C13124.1 (3)
C5—N1—H12112 (3)O2—C8—C13110.9 (3)
H11—N1—H12106 (4)C4—C10—C12119.9 (3)
C5—N1—H13105 (3)C4—C10—H10A120.1
H11—N1—H13111 (4)C12—C10—H10A120.1
H12—N1—H13112 (3)C5—C11—C7119.5 (3)
C12—O1—C13118.4 (2)C5—C11—H11A120.2
C10—C4—C5119.3 (3)C7—C11—H11A120.2
C10—C4—H4A120.3O1—C12—C7124.2 (3)
C5—C4—H4A120.3O1—C12—C10115.1 (3)
C11—C5—C4121.3 (3)C7—C12—C10120.8 (3)
C11—C5—N1118.6 (3)O1—C13—C8107.1 (3)
C4—C5—N1120.0 (3)O1—C13—H13A110.3
C8—O2—H14105 (3)C8—C13—H13A110.3
C12—C7—C11119.2 (3)O1—C13—H13B110.3
C12—C7—H7A120.4C8—C13—H13B110.3
C11—C7—H7A120.4H13A—C13—H13B108.5
O3—C8—O2125.0 (3)
C10—C4—C5—C110.6 (5)C11—C7—C12—O1−179.0 (3)
C10—C4—C5—N1−178.8 (3)C11—C7—C12—C100.8 (5)
C5—C4—C10—C120.2 (5)C4—C10—C12—O1178.9 (3)
C4—C5—C11—C7−0.6 (5)C4—C10—C12—C7−0.9 (5)
N1—C5—C11—C7178.7 (3)C12—O1—C13—C8175.9 (3)
C12—C7—C11—C50.0 (5)O3—C8—C13—O1−3.0 (5)
C13—O1—C12—C71.6 (5)O2—C8—C13—O1175.7 (3)
C13—O1—C12—C10−178.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H11···Br10.95 (4)2.37 (5)3.316 (3)173 (4)
N1—H12···Br1i0.99 (5)2.47 (5)3.317 (3)144 (4)
N1—H13···O3ii0.91 (4)1.94 (4)2.812 (4)159 (3)
O2—H14···Br1iii0.78 (4)2.46 (4)3.223 (3)165 (4)

Symmetry codes: (i) x+1, y, z; (ii) x, −y+1/2, z−1/2; (iii) x+1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2777).

References

  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Jain, P., Dalal, N. S. & Toby, B. H. (2008). J. Am. Chem. Soc.131, 10450–10451 [PubMed]
  • Korfer, M. & Fusee, H. (1988). Z. Kristallogr.183, 27–30
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography