PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1649.
Published online 2010 June 16. doi:  10.1107/S1600536810021902
PMCID: PMC3006836

(3-Pyrid­yl)methanaminium 4-nitro­phenolate 4-nitro­phenol solvate

Abstract

In the crystal structure of the title compound, C6H9N2 +·C6H4NO3 ·C6H5NO3, ions and mol­ecules are connected via inter­molecular N—H(...)O, N—H(...)N, O—H(...)O and C—H(...)O hydrogen bonds into a three-dimensional network.

Related literature

For background to the development of ferroelectric pure organic or inorganic compounds, see: Haertling et al. (1999 [triangle]); Homes et al. (2001 [triangle]). For our recent reports on the synthesis of a variety of compounds which have potential piezoelectric and ferroelectric properties, see: Fu et al. (2009 [triangle]); Hang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1649-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C6H4NO3 ·C6H5NO3
  • M r = 386.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1649-efi1.jpg
  • a = 6.3666 (13) Å
  • b = 7.4451 (15) Å
  • c = 21.262 (4) Å
  • α = 92.41 (3)°
  • β = 95.56 (3)°
  • γ = 113.99 (3)°
  • V = 912.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.825, T max = 1.000
  • 9547 measured reflections
  • 4182 independent reflections
  • 2896 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.140
  • S = 1.05
  • 4182 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021902/jh2162sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021902/jh2162Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

supplementary crystallographic information

Comment

At present, much attention in ferroelectric material field is focused on developing ferroelectric pure organic or inorganic compounds (Haertling et al. 1999; Homes et al. 2001). Recently we have reported the synthesis of a variety of compounds (Fu et al., 2009; Hang et al., 2009), which have potential piezoelectric and ferroelectric properties. In order to find more dielectric ferroelectric materials, we investigate the physical properties of the title compound(Fig. 1). The dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 2.8 to 4.6), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (399 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 2.8 to 4.6).Herein, we report the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. There are one 4-nitrophenolate anion, an substituted ammonium cation and a neutral 4-nitrophenol molecule in the asymmetric unit. Molecules of the title compound have normal geometric parameters. The bond lengths and angles are within their normal ranges. All pyridine rings are, of course, planar. As can be seen from the packing diagram (Fig. 2), molecules are connected via intermolecular C—H···O and O—H···N hydrogen bonds to form a three dimensional network. Dipole–dipole and van der Waals interactions are effective in the molecular packing.

Experimental

4-nitrophenol (2.085 g, 0.015 mol) was added slowly to a solution of pyridin-3-ylmethanamine (1.62 g, 0.015 mol) in methanol.After several days, the title compound was formed and recrystallized from solution to afford colourless prismatic crystals suitable for X-ray analysis.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H(aromatic) = 0.93 and 0.97 (methylene) Å, N—H = 0.89 Å and O—H = 0.97 Å and with Uiso(H) = 1.3–1.5Ueq(C, N, O).

Figures

Fig. 1.
Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound viewed along the a axis showing the hydrogen bondings network. Some of the H atoms have been ommitted for clarity.

Crystal data

C6H9N2+·C6H4NO3·C6H5nO3Z = 2
Mr = 386.36F(000) = 404
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3666 (13) ÅCell parameters from 4182 reflections
b = 7.4451 (15) Åθ = 2.6–27.5°
c = 21.262 (4) ŵ = 0.11 mm1
α = 92.41 (3)°T = 293 K
β = 95.56 (3)°Prism, colorless
γ = 113.99 (3)°0.20 × 0.20 × 0.20 mm
V = 912.8 (3) Å3

Data collection

Rigaku Mercury2 diffractometer4182 independent reflections
Radiation source: fine-focus sealed tube2896 reflections with I > 2σ(I)
graphiteRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = −8→8
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −9→9
Tmin = 0.825, Tmax = 1.000l = −27→27
9547 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2125P] where P = (Fo2 + 2Fc2)/3
4182 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O30.3538 (2)0.0490 (2)0.19323 (6)0.0471 (3)
O40.7520 (2)0.0641 (2)0.23068 (6)0.0490 (4)
H4A0.60120.06340.21940.074*
C100.2665 (3)0.2431 (3)0.01944 (8)0.0389 (4)
N30.2243 (3)0.2980 (2)−0.04283 (8)0.0481 (4)
C70.3307 (3)0.1152 (3)0.13814 (8)0.0369 (4)
O20.3528 (3)0.2970 (2)−0.08282 (7)0.0609 (4)
O10.0584 (3)0.3409 (3)−0.05577 (7)0.0687 (5)
C90.1125 (3)0.2297 (3)0.06264 (9)0.0442 (5)
H9A−0.01140.26330.05220.053*
C80.1442 (3)0.1664 (3)0.12100 (9)0.0438 (4)
H10A0.04030.15720.14990.053*
C130.8177 (3)0.1128 (3)0.29326 (8)0.0388 (4)
C120.4868 (3)0.1361 (3)0.09345 (9)0.0445 (5)
H12A0.61440.10740.10400.053*
C110.4552 (3)0.1978 (3)0.03479 (9)0.0445 (5)
H11A0.55890.20910.00570.053*
C180.6884 (3)0.1667 (3)0.33310 (9)0.0488 (5)
H18A0.55130.17310.31650.059*
C160.9669 (4)0.2016 (3)0.42097 (9)0.0523 (5)
C141.0262 (3)0.1105 (3)0.31834 (9)0.0476 (5)
H14A1.11670.07980.29170.057*
C151.0994 (4)0.1534 (3)0.38222 (10)0.0530 (5)
H15A1.23790.14970.39910.064*
C170.7627 (4)0.2106 (3)0.39719 (10)0.0570 (6)
H17A0.67610.24590.42400.068*
O51.2363 (4)0.2523 (5)0.50752 (9)0.1289 (10)
O60.9263 (4)0.2807 (4)0.52407 (9)0.1112 (8)
N41.0492 (5)0.2488 (4)0.48875 (10)0.0792 (7)
N1−0.0537 (3)0.7260 (2)0.20070 (7)0.0414 (4)
H1A−0.16860.70060.16960.062*
H1B0.06900.83250.19350.062*
H1C−0.09890.74760.23750.062*
N20.5902 (3)0.6209 (3)0.28249 (8)0.0502 (4)
C10.5678 (4)0.6498 (3)0.34345 (9)0.0485 (5)
H1D0.69190.66930.37390.058*
C40.2013 (3)0.5896 (3)0.25514 (9)0.0398 (4)
C50.4074 (3)0.5913 (3)0.24015 (9)0.0466 (5)
H5A0.42050.57030.19750.056*
C30.1849 (3)0.6229 (3)0.31859 (9)0.0469 (5)
H3A0.04990.62540.33090.056*
C60.0087 (4)0.5549 (3)0.20322 (10)0.0491 (5)
H6A0.05590.53050.16280.059*
H6C−0.12620.43840.21010.059*
C20.3695 (3)0.6522 (3)0.36331 (9)0.0490 (5)
H2A0.36050.67330.40620.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O30.0441 (8)0.0624 (9)0.0358 (7)0.0228 (7)0.0022 (6)0.0128 (6)
O40.0430 (8)0.0695 (9)0.0332 (7)0.0231 (7)−0.0002 (6)0.0017 (6)
C100.0433 (10)0.0396 (10)0.0295 (9)0.0146 (8)−0.0031 (7)0.0008 (7)
N30.0561 (11)0.0485 (10)0.0345 (9)0.0185 (8)−0.0034 (8)0.0026 (7)
C70.0358 (9)0.0402 (10)0.0305 (9)0.0128 (8)−0.0018 (7)0.0015 (7)
O20.0672 (10)0.0792 (11)0.0352 (8)0.0280 (8)0.0083 (7)0.0124 (7)
O10.0807 (12)0.0936 (12)0.0480 (9)0.0546 (10)−0.0054 (8)0.0147 (8)
C90.0437 (11)0.0536 (11)0.0404 (10)0.0265 (9)−0.0004 (8)0.0038 (9)
C80.0433 (11)0.0561 (12)0.0370 (10)0.0249 (9)0.0074 (8)0.0044 (9)
C130.0389 (10)0.0422 (10)0.0324 (9)0.0143 (8)0.0020 (7)0.0050 (8)
C120.0398 (10)0.0605 (12)0.0386 (10)0.0267 (9)0.0014 (8)0.0068 (9)
C110.0412 (10)0.0563 (12)0.0360 (10)0.0198 (9)0.0059 (8)0.0037 (8)
C180.0410 (11)0.0651 (13)0.0432 (11)0.0253 (10)0.0035 (8)0.0031 (9)
C160.0573 (13)0.0654 (13)0.0322 (10)0.0250 (11)−0.0012 (9)0.0009 (9)
C140.0441 (11)0.0602 (12)0.0420 (11)0.0264 (10)0.0024 (8)−0.0029 (9)
C150.0458 (12)0.0689 (14)0.0451 (12)0.0283 (11)−0.0090 (9)−0.0022 (10)
C170.0527 (13)0.0778 (15)0.0436 (12)0.0291 (12)0.0128 (9)−0.0005 (11)
O50.1125 (19)0.228 (3)0.0508 (12)0.088 (2)−0.0332 (12)−0.0189 (14)
O60.1272 (19)0.172 (2)0.0420 (10)0.0706 (18)0.0152 (11)−0.0083 (12)
N40.0898 (17)0.1082 (18)0.0373 (11)0.0416 (14)−0.0021 (11)−0.0018 (11)
N10.0396 (9)0.0564 (10)0.0309 (8)0.0226 (8)0.0024 (6)0.0071 (7)
N20.0444 (10)0.0676 (11)0.0412 (9)0.0260 (9)0.0038 (7)0.0050 (8)
C10.0471 (11)0.0589 (12)0.0383 (11)0.0217 (10)−0.0015 (8)0.0085 (9)
C40.0421 (10)0.0377 (10)0.0379 (10)0.0159 (8)−0.0004 (8)0.0047 (8)
C50.0499 (12)0.0566 (12)0.0343 (10)0.0232 (10)0.0043 (8)0.0016 (9)
C30.0431 (11)0.0576 (12)0.0430 (11)0.0232 (10)0.0075 (8)0.0076 (9)
C60.0529 (12)0.0454 (11)0.0462 (12)0.0212 (10)−0.0091 (9)−0.0012 (9)
C20.0507 (12)0.0643 (13)0.0329 (10)0.0235 (10)0.0088 (8)0.0081 (9)

Geometric parameters (Å, °)

O3—C71.308 (2)C14—C151.373 (3)
O4—C131.344 (2)C14—H14A0.9300
O4—H4A0.9646C15—H15A0.9300
C10—C91.385 (3)C17—H17A0.9300
C10—C111.387 (3)O5—N41.209 (3)
C10—N31.435 (2)O6—N41.218 (3)
N3—O11.232 (2)N1—C61.482 (2)
N3—O21.238 (2)N1—H1A0.8900
C7—C81.409 (3)N1—H1B0.8900
C7—C121.409 (3)N1—H1C0.8900
C9—C81.371 (3)N2—C11.336 (3)
C9—H9A0.9300N2—C51.336 (3)
C8—H10A0.9300C1—C21.376 (3)
C13—C141.389 (3)C1—H1D0.9300
C13—C181.389 (3)C4—C51.375 (3)
C12—C111.372 (3)C4—C31.383 (3)
C12—H12A0.9300C4—C61.498 (3)
C11—H11A0.9300C5—H5A0.9300
C18—C171.378 (3)C3—C21.375 (3)
C18—H18A0.9300C3—H3A0.9300
C16—C151.370 (3)C6—H6A0.9700
C16—C171.377 (3)C6—H6C0.9700
C16—N41.462 (3)C2—H2A0.9300
C13—O4—H4A110.0C14—C15—H15A120.3
C9—C10—C11121.06 (17)C16—C17—C18119.14 (19)
C9—C10—N3119.04 (17)C16—C17—H17A120.4
C11—C10—N3119.86 (18)C18—C17—H17A120.4
O1—N3—O2121.47 (17)O5—N4—O6122.7 (2)
O1—N3—C10119.44 (17)O5—N4—C16118.4 (2)
O2—N3—C10119.07 (17)O6—N4—C16119.0 (2)
O3—C7—C8120.54 (17)C6—N1—H1A109.5
O3—C7—C12122.14 (16)C6—N1—H1B109.5
C8—C7—C12117.31 (16)H1A—N1—H1B109.5
C8—C9—C10119.43 (17)C6—N1—H1C109.5
C8—C9—H9A120.3H1A—N1—H1C109.5
C10—C9—H9A120.3H1B—N1—H1C109.5
C9—C8—C7121.42 (18)C1—N2—C5116.81 (18)
C9—C8—H10A119.3N2—C1—C2123.07 (19)
C7—C8—H10A119.3N2—C1—H1D118.5
O4—C13—C14117.63 (17)C2—C1—H1D118.5
O4—C13—C18123.06 (17)C5—C4—C3117.13 (18)
C14—C13—C18119.31 (17)C5—C4—C6119.56 (18)
C11—C12—C7121.54 (17)C3—C4—C6123.31 (18)
C11—C12—H12A119.2N2—C5—C4124.60 (18)
C7—C12—H12A119.2N2—C5—H5A117.7
C12—C11—C10119.20 (18)C4—C5—H5A117.7
C12—C11—H11A120.4C2—C3—C4119.60 (19)
C10—C11—H11A120.4C2—C3—H3A120.2
C17—C18—C13120.22 (19)C4—C3—H3A120.2
C17—C18—H18A119.9N1—C6—C4111.67 (16)
C13—C18—H18A119.9N1—C6—H6A109.3
C15—C16—C17121.48 (19)C4—C6—H6A109.3
C15—C16—N4118.6 (2)N1—C6—H6C109.3
C17—C16—N4119.9 (2)C4—C6—H6C109.3
C15—C14—C13120.36 (19)H6A—C6—H6C107.9
C15—C14—H14A119.8C3—C2—C1118.79 (19)
C13—C14—H14A119.8C3—C2—H2A120.6
C16—C15—C14119.43 (19)C1—C2—H2A120.6
C16—C15—H15A120.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.092.952 (2)162
N1—H1B···O3ii0.891.872.753 (2)169
N1—H1C···N2iii0.892.162.866 (2)136
O4—H4A···O30.961.582.5385 (19)173
C1—H1D···O5iv0.932.523.229 (3)133
C2—H2A···O6v0.932.583.327 (3)138
C8—H10A···O4iii0.932.543.462 (3)169

Symmetry codes: (i) −x, −y+1, −z; (ii) x, y+1, z; (iii) x−1, y, z; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2162).

References

  • Fu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. & Qu, Z. R. (2009). Inorg. Chem. Commun.12, 994–997.
  • Haertling, G. H. (1999). J. Am. Ceram. Soc.82, 797–810.
  • Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des.5, 2026–2029.
  • Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673–676. [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography