PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1803.
Published online 2010 June 26. doi:  10.1107/S1600536810020556
PMCID: PMC3006835

N-(3-Butyl-4-oxo-1,3-thia­zolidin-2-yl­idene)benzamide

Abstract

In the title compound, C14H16N2O2S, the thia­zolidine ring is planar [maximum atomic deviation = 0.0080 (14) Å] and twisted slightly with respect to the phenyl ring, making a dihedral angle of 4.46 (14)°. The butyl group displays an extended conformation, with a torsion angle of 169.4 (4)°. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link the mol­ecules, forming supra­molecular chains.

Related literature

For the pharmaceutical applications of thia­zolidinones, see: Amin et al. (2008 [triangle]); Ramla et al. (2007 [triangle]). For the synthesis, see: Peng et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1803-scheme1.jpg

Experimental

Crystal data

  • C14H16N2O2S
  • M r = 276.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1803-efi1.jpg
  • a = 5.4690 (1) Å
  • b = 30.5591 (8) Å
  • c = 8.6032 (2) Å
  • β = 99.895 (3)°
  • V = 1416.44 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 294 K
  • 0.50 × 0.14 × 0.07 mm

Data collection

  • Oxford Diffraction Nova A diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2008 [triangle]) T min = 0.895, T max = 0.984
  • 7446 measured reflections
  • 2530 independent reflections
  • 1987 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.129
  • S = 1.06
  • 2530 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and OLEX2 (Dolomanov et al., 2009 [triangle]).; software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020556/sj2789sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020556/sj2789Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Zhejiang Province, China for financial support (grant No. Y4080234).

supplementary crystallographic information

Comment

Thiazolidinones have wide applications as anticonvulsant (Amin et al., 2008) and anti-neoplastic drugs (Ramla et al., 2007). We report here the structure of a new thiazolidinone derivative, I, Fig. 1.

The thiazolidinyl ring and phenyl ring are almost co-planar with the dihedral angle of 4.46 (14)°. The C11—C12—C13—C14 torsion angle is 169.4 (4)°, showing an extended conformation for the butyl substituent. The N1═C8 bond distance of 1.291 (3) Å indicates a typical double bond. In the crystal structure, weak intermolecular C—H···O hydrogen bonds, Table 1, link the molecules to form one-dimensional supra-molecular chains, Fig. 2.

Experimental

The title compound was prepared according to the procedure reported by Peng et al. (2004). A 50 ml flask equipped with a dropping funnel was charged with NH4SCN (0.152 g, 2 mmol) and [bmim][PF6] (2 ml) and was cooled in an ice-water bath. Freshly distilled benzoyl chloride(0.284 g, 2 mmol) was added dropwise and stirred for a further 20 min (disappearance of the starting material was monitored by TLC). n-Butylamine (2 mmol) was then added to the same reaction vessel at room temperature and the mixture was stirred for 20 min more. On completion, ethyl chloroacetate (2.4 mmol) and anhydrous sodium acetate (0.196 g, 2.4 mmol) was added to the flask, and the mixture was heated at 80°C for 2-3 h. After consumption of N-benzoyl-N'-butylthiourea as indicated by by TLC monitoring, the salts were firstly leached with water (5 ml×2), and the crude product was collected by filtration. Recrystallization from ethanol gave pure product as a yellow crystalline solid.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methine). The torsion angle of methyl group was refined to fit the electron density, with Uiso(H) = 1.5Uea(C). For the other H atoms, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with 40% probability displacement ellipsoids.
Fig. 2.
Crystal packing for I viewed down the a axis.

Crystal data

C14H16N2O2SF(000) = 584
Mr = 276.35Dx = 1.296 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3174 reflections
a = 5.4690 (1) Åθ = 2.8–25.0°
b = 30.5591 (8) ŵ = 0.23 mm1
c = 8.6032 (2) ÅT = 294 K
β = 99.895 (3)°Platelet, yellow
V = 1416.44 (6) Å30.50 × 0.14 × 0.07 mm
Z = 4

Data collection

Oxford Diffraction Nova A diffractometer2530 independent reflections
Radiation source: fine-focus sealed tube1987 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 25.1°, θmin = 1.3°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2008)h = −6→3
Tmin = 0.895, Tmax = 0.984k = −36→36
7446 measured reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.129w = 1/[σ2(Fo2) + (0.0615P)2 + 0.3856P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2530 reflectionsΔρmax = 0.20 e Å3
174 parametersΔρmin = −0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.28923 (11)0.210301 (19)0.34733 (8)0.0680 (2)
N10.0399 (3)0.14912 (6)0.1466 (2)0.0568 (5)
N20.4097 (3)0.12988 (6)0.3021 (2)0.0604 (5)
O1−0.1307 (3)0.21815 (6)0.1475 (2)0.0846 (6)
O20.7761 (3)0.11970 (7)0.4680 (2)0.0903 (6)
C1−0.3441 (4)0.12483 (8)−0.0946 (3)0.0675 (6)
H1−0.21200.1058−0.06370.081*
C2−0.5428 (5)0.11225 (10)−0.2086 (3)0.0834 (8)
H2−0.54350.0846−0.25400.100*
C3−0.7382 (5)0.14015 (11)−0.2550 (3)0.0850 (8)
H3−0.87110.1313−0.33100.102*
C4−0.7377 (4)0.18069 (11)−0.1902 (3)0.0798 (8)
H4−0.86970.1996−0.22280.096*
C5−0.5429 (4)0.19391 (8)−0.0765 (3)0.0674 (6)
H5−0.54410.2217−0.03220.081*
C6−0.3447 (4)0.16583 (7)−0.0278 (2)0.0555 (5)
C7−0.1369 (4)0.18080 (7)0.0965 (3)0.0588 (5)
C80.2273 (4)0.16005 (7)0.2522 (2)0.0543 (5)
C90.6056 (4)0.14333 (9)0.4145 (3)0.0669 (6)
C100.5774 (4)0.19006 (9)0.4582 (3)0.0740 (7)
H10A0.71540.20710.43380.089*
H10B0.57560.19250.57040.089*
C110.4005 (4)0.08576 (8)0.2365 (3)0.0693 (6)
H11A0.56830.07460.24520.083*
H11B0.32890.08700.12530.083*
C120.2517 (5)0.05489 (9)0.3177 (4)0.0900 (8)
H12A0.08710.06690.31600.108*
H12B0.33030.05160.42710.108*
C130.2296 (8)0.01017 (11)0.2380 (6)0.1436 (17)
H13A0.18310.01460.12510.172*
H13B0.3921−0.00350.25640.172*
C140.0574 (10)−0.01942 (15)0.2872 (8)0.194 (3)
H14A0.0878−0.02140.40020.291*
H14B0.0767−0.04780.24300.291*
H14C−0.1084−0.00910.25150.291*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0674 (4)0.0599 (4)0.0716 (4)−0.0109 (3)−0.0022 (3)−0.0083 (3)
N10.0544 (10)0.0541 (10)0.0564 (10)−0.0011 (8)−0.0061 (8)0.0013 (8)
N20.0529 (10)0.0640 (11)0.0592 (10)0.0002 (8)−0.0045 (8)0.0004 (9)
O10.0866 (12)0.0620 (10)0.0931 (13)0.0110 (8)−0.0190 (10)−0.0116 (9)
O20.0606 (10)0.1150 (15)0.0852 (12)0.0086 (10)−0.0155 (9)0.0012 (11)
C10.0633 (13)0.0679 (14)0.0656 (14)−0.0014 (11)−0.0054 (11)−0.0005 (11)
C20.0786 (17)0.0852 (18)0.0781 (17)−0.0140 (14)−0.0104 (13)−0.0076 (14)
C30.0620 (15)0.115 (2)0.0689 (16)−0.0187 (15)−0.0132 (12)0.0112 (16)
C40.0534 (13)0.102 (2)0.0792 (17)0.0026 (13)−0.0040 (12)0.0219 (16)
C50.0577 (13)0.0705 (14)0.0714 (14)0.0035 (11)0.0035 (11)0.0101 (12)
C60.0495 (11)0.0596 (12)0.0548 (11)−0.0026 (9)0.0021 (9)0.0075 (10)
C70.0584 (12)0.0539 (12)0.0606 (12)0.0001 (10)0.0001 (10)0.0009 (10)
C80.0534 (11)0.0540 (12)0.0531 (11)−0.0059 (9)0.0027 (9)0.0013 (9)
C90.0506 (12)0.0865 (17)0.0590 (13)−0.0085 (11)−0.0035 (10)0.0037 (12)
C100.0615 (14)0.0884 (18)0.0669 (14)−0.0221 (12)−0.0039 (11)−0.0040 (13)
C110.0608 (13)0.0674 (14)0.0751 (15)0.0091 (11)−0.0013 (11)−0.0030 (12)
C120.0860 (19)0.0689 (16)0.114 (2)0.0021 (14)0.0156 (17)−0.0020 (16)
C130.144 (3)0.0650 (19)0.234 (5)−0.012 (2)0.068 (3)−0.017 (3)
C140.179 (5)0.108 (3)0.313 (8)−0.038 (3)0.093 (5)−0.040 (4)

Geometric parameters (Å, °)

S1—C81.746 (2)C5—C61.390 (3)
S1—C101.805 (2)C5—H50.9300
N1—C81.291 (3)C6—C71.492 (3)
N1—C71.384 (3)C9—C101.491 (4)
N2—C81.372 (3)C10—H10A0.9700
N2—C91.377 (3)C10—H10B0.9700
N2—C111.459 (3)C11—C121.495 (4)
O1—C71.221 (3)C11—H11A0.9700
O2—C91.206 (3)C11—H11B0.9700
C1—C61.379 (3)C12—C131.525 (5)
C1—C21.387 (3)C12—H12A0.9700
C1—H10.9300C12—H12B0.9700
C2—C31.372 (4)C13—C141.421 (5)
C2—H20.9300C13—H13A0.9700
C3—C41.359 (4)C13—H13B0.9700
C3—H30.9300C14—H14A0.9600
C4—C51.377 (3)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C8—S1—C1091.59 (11)N2—C9—C10111.2 (2)
C8—N1—C7117.76 (19)C9—C10—S1108.30 (15)
C8—N2—C9117.08 (19)C9—C10—H10A110.0
C8—N2—C11121.66 (17)S1—C10—H10A110.0
C9—N2—C11121.24 (19)C9—C10—H10B110.0
C6—C1—C2119.3 (2)S1—C10—H10B110.0
C6—C1—H1120.4H10A—C10—H10B108.4
C2—C1—H1120.4N2—C11—C12112.8 (2)
C3—C2—C1120.7 (3)N2—C11—H11A109.0
C3—C2—H2119.7C12—C11—H11A109.0
C1—C2—H2119.7N2—C11—H11B109.0
C4—C3—C2120.0 (2)C12—C11—H11B109.0
C4—C3—H3120.0H11A—C11—H11B107.8
C2—C3—H3120.0C11—C12—C13111.3 (3)
C3—C4—C5120.4 (2)C11—C12—H12A109.4
C3—C4—H4119.8C13—C12—H12A109.4
C5—C4—H4119.8C11—C12—H12B109.4
C4—C5—C6120.1 (2)C13—C12—H12B109.4
C4—C5—H5120.0H12A—C12—H12B108.0
C6—C5—H5120.0C14—C13—C12116.2 (4)
C1—C6—C5119.5 (2)C14—C13—H13A108.2
C1—C6—C7121.44 (19)C12—C13—H13A108.2
C5—C6—C7119.0 (2)C14—C13—H13B108.2
O1—C7—N1124.6 (2)C12—C13—H13B108.2
O1—C7—C6121.0 (2)H13A—C13—H13B107.4
N1—C7—C6114.46 (19)C13—C14—H14A109.5
N1—C8—N2119.52 (19)C13—C14—H14B109.5
N1—C8—S1128.62 (17)H14A—C14—H14B109.5
N2—C8—S1111.86 (14)C13—C14—H14C109.5
O2—C9—N2123.1 (2)H14A—C14—H14C109.5
O2—C9—C10125.7 (2)H14B—C14—H14C109.5
C6—C1—C2—C30.1 (4)C11—N2—C8—N11.3 (3)
C1—C2—C3—C40.5 (4)C9—N2—C8—S1−0.2 (3)
C2—C3—C4—C5−0.7 (4)C11—N2—C8—S1−178.67 (17)
C3—C4—C5—C60.3 (4)C10—S1—C8—N1−179.2 (2)
C2—C1—C6—C5−0.5 (4)C10—S1—C8—N20.77 (18)
C2—C1—C6—C7179.3 (2)C8—N2—C9—O2179.6 (2)
C4—C5—C6—C10.3 (4)C11—N2—C9—O2−1.9 (4)
C4—C5—C6—C7−179.5 (2)C8—N2—C9—C10−0.7 (3)
C8—N1—C7—O1−1.5 (4)C11—N2—C9—C10177.8 (2)
C8—N1—C7—C6178.87 (18)O2—C9—C10—S1−179.1 (2)
C1—C6—C7—O1175.0 (2)N2—C9—C10—S11.2 (3)
C5—C6—C7—O1−5.1 (3)C8—S1—C10—C9−1.12 (19)
C1—C6—C7—N1−5.3 (3)C8—N2—C11—C12−85.8 (3)
C5—C6—C7—N1174.51 (19)C9—N2—C11—C1295.8 (3)
C7—N1—C8—N2−178.42 (19)N2—C11—C12—C13175.6 (3)
C7—N1—C8—S11.5 (3)C11—C12—C13—C14−169.4 (4)
C9—N2—C8—N1179.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.393.309 (3)172

Symmetry codes: (i) x−2, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2789).

References

  • Amin, K. M., Rahman, D. E. A. & Al-Eryani, Y. (2008). Bioorg. Med. Chem.16, 5377-5388. [PubMed]
  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Oxford Diffraction (2008). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Peng, Y.-Q., Song, G.-H. & Huang, F.-F. (2004). J. Chem. Res.10, 676–678.
  • Ramla, M. M., Omarm, M. A., Tokuda, H. & El-Diwani, H. I. (2007). Bioorg. Med. Chem.15, 6489–6496. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography