PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1592.
Published online 2010 June 5. doi:  10.1107/S1600536810020878
PMCID: PMC3006833

(E)-3-[4-(Dimethyl­amino)­benzyl­idene]-2,3-di­hydro-1H,9H-pyrrolo­[2,1-b]quinazolin-9-one

Abstract

The title compound, C20H19N3O, was obtained by condensation of 2,3-dihydro-1H,9H-pyrrolo­[2,1-b]quinazolin-9-one (alkaloid de­oxy­vasicinone, isolated from Peganum Harmala) with 4-(dimethyl­amino)­benzaldehyde in the presence of sodium methoxide. The 2,3-dihydro-1H,9H-pyrrolo­[2,1-b]quinazolin-9-one part of the mol­ecule is roughly planar (r.m.s. deviation = 0.0178 Å) and is essentially coplanar with the benzil­idene ring (r.m.s. deviation = 0.0080 Å), forming a dihedral angle of 5.0 (1)°. The crystal structure is stabilized by two aromatic π–π stacking inter­actions observed between the benzene rings of neighboring mol­ecules [centroid–centroid distance = 3.7555 (19) Å.

Related literature

For the synthesis of 2,3-dihydro-1H-pyrrolo­[2,1-b]quinazolin-9-one and the title compound, see: Shakhidoyatov et al. (1977 [triangle]); Elmuradov et al. (2009 [triangle]); Shakhidoyatov & Kaysarov, (1998 [triangle]); Jahng et al. (2008 [triangle]). For the physiological activity of 2,3-dihydro-1H-pyrrolo­[2,1-b]quinazolin-9-one and its derivatives, see: Chatterjee & Ganguly, (1968 [triangle]); Al-Shamma et al. (1981 [triangle]); Johne (1981 [triangle]); Telezhenetskaya & Yunusov, (1977 [triangle]); Yunusov et al. (1978 [triangle]). For related structures, see: Barnes et al. (1985 [triangle]); Wu et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1592-scheme1.jpg

Experimental

Crystal data

  • C20H19N3O
  • M r = 317.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1592-efi1.jpg
  • a = 8.8030 (18) Å
  • b = 16.415 (3) Å
  • c = 11.463 (2) Å
  • β = 105.05 (3)°
  • V = 1599.6 (6) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.66 mm−1
  • T = 300 K
  • 0.60 × 0.20 × 0.15 mm

Data collection

  • Stoe Stadi-4 four-circle diffractometer
  • Absorption correction: ψ scan (X-RED; Stoe & Cie, 1997 [triangle]). T min = 0.854, T max = 0.906
  • 2446 measured reflections
  • 2342 independent reflections
  • 1728 reflections with I > 2σ(I)
  • θmax = 60.0°
  • 3 standard reflections every 60 min intensity decay: 10.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.142
  • S = 1.13
  • 2342 reflections
  • 220 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: STADI4 (Stoe & Cie, 1997 [triangle]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020878/si2264sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020878/si2264Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA-F3-T047).

supplementary crystallographic information

Comment

The derivatives of tricyclic quinazoline alkaloids possess different pharmacological activities (Chatterjee & Ganguly, 1968; Al-Shamma et al., 1981; Johne, 1981; Telezhenetskaya & Yunusov, 1977; Yunusov et al., 1978) and was found simples and convenient methods of a synthesis of these compounds (Shakhidoyatov et al., 1977; Shakhidoyatov & Kaysarov, 1998; Jahng et al., 2008).

Condensation of 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one (alkaloid Deoxyvasicinone, isolated from Peganum Harmala) (Chatterjee & Ganguly, 1968) with 4-dimethylaminobenzaldehyde at 278 (1) K in presence of sodium methoxide (Elmuradov et al., 2009) leads to the formation of (E)-3-(4-dimethylamino)benzylidene-2,3-dihydro- 1H-pyrrolo[2,1-b]quinazolin-9-one (Figure 1).

The quinazoline part of molecule (C1/C2/C3/C3a/N4/C4a/C5/C6/C7/C8/C8a/C9/N10) is flat, r.m.s. deviation = 0.0178 Å, and benzilidene ring (C1'/C2'/C3'/C4'/C5'/C6'/C7') is also flat, r.m.s. deviation = 0.0080 Å, the angle between fragment planes is 5.0 (1)° (Figure 2). Torsion angle in fragment C3a–C3–C7'–C6' is 175.0 (5)° (Barnes et al., 1985; Wu et al., 1997), indicating the conjugation of π-electronic systems of pyrrolo(2,1-b)quinazolone and benzilidene rings. The sum of valent angles of all nitrogen atoms are close to 360° (Figure 3) which specifies sp2 hybridizations of nitrogen atoms. It specifies, that the lone electronic pair of nitrogen atoms participate in a conjugation with π electrons of aromatic ring. The crystal structure is stabilized by π-π interactions between the benzene rings of neighbor standing molecules with the distance Cg3···Cg4i = 3.7555 (19) Å [symmetry code: (i) -x, 1 - y, 1 - z; Cg3 and Cg4 are centroid of the C1'-C6' and C4a/C5-C8/C8a two benzene rings].

Experimental

0.115 g sodium (5 mmole) was dissolved in 5 ml absolute methanol, and 0.186 g (1 mmole) of 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one and 0.151 g (1 mmole) 4-dimethylamino-benzaldehyde were added (Figure 1). Reaction mixture was left at 278 (1) K for 3 weeks. The dropped out single crystals, suitable for X-ray analysis were filtered, flushed at first with alcohol, then water. 0.05 g (16%) of the title compound was obtained in the reaction, m.p. 514-516 K.

Refinement

The 10% decay correction was applied by using the programm X-RED. The H atoms bonded to C atoms were placed geometrically (with C–H distances of 0.98 Å for CH; 0.97 Å for CH2; 0.96 Å for CH3; and 0.93 Å for Car) and included in the refinement in a riding motion approximation with Uiso(H)=1.2Ueq(C) [Uiso(H)=1.5Ueq(C) for methyl H atoms].

Figures

Fig. 1.
Reaction sequence.
Fig. 2.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 3.
A section of molecular packing of the title compound.

Crystal data

C20H19N3OF(000) = 672
Mr = 317.38Dx = 1.318 Mg m3
Monoclinic, P21/cMelting point: 514(2) K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 8.8030 (18) ÅCell parameters from 12 reflections
b = 16.415 (3) Åθ = 10–20°
c = 11.463 (2) ŵ = 0.66 mm1
β = 105.05 (3)°T = 300 K
V = 1599.6 (6) Å3Prizmatic, light yellow
Z = 40.60 × 0.20 × 0.15 mm

Data collection

Stoe Stadi-4 four-circle diffractometer1728 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 60.0°, θmin = 4.8°
Scan width (ω) = 1.32 – 1.56, scan ratio 2θ:ω = 0.00 I(Net) and sigma(I) calculated according to Blessing (1987)h = −9→9
Absorption correction: ψ scan (X-RED; Stoe & Cie, 1997).k = 0→18
Tmin = 0.854, Tmax = 0.906l = 0→12
2446 measured reflections3 standard reflections every 60 min
2342 independent reflections intensity decay: 10.0%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.142w = 1/[σ2(Fo2) + (0.0446P)2 + 1.0639P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2342 reflectionsΔρmax = 0.16 e Å3
220 parametersΔρmin = −0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (3)

Special details

Experimental. Empirical absorption correction using ψ Scan. Reflections used Mu * R = 0.00 H K L, θ, χ, I~min~/I~max~: -2 1 1 21.1 80.5 0.900
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.1964 (3)0.57316 (13)0.07780 (19)0.0553 (7)
C10.0365 (4)0.48250 (18)0.2373 (3)0.0496 (9)
H1A0.08180.48800.16910.060*
H1B−0.04320.44020.21970.060*
C20.1634 (4)0.46318 (18)0.3530 (3)0.0435 (8)
H2A0.14350.41070.38510.052*
H2B0.26630.46170.33700.052*
C30.1562 (3)0.52982 (17)0.4410 (3)0.0373 (7)
C3A0.0343 (3)0.58741 (17)0.3798 (2)0.0355 (7)
N4−0.0078 (3)0.65349 (14)0.4246 (2)0.0391 (6)
C4A−0.1278 (3)0.69758 (17)0.3470 (3)0.0378 (7)
C5−0.1799 (4)0.76888 (18)0.3914 (3)0.0459 (8)
H5A−0.13300.78560.47000.055*
C6−0.2995 (4)0.8144 (2)0.3201 (3)0.0495 (8)
H6A−0.33270.86180.35030.059*
C7−0.3707 (4)0.78958 (19)0.2026 (3)0.0476 (8)
H7A−0.45250.82010.15490.057*
C8−0.3213 (3)0.72058 (19)0.1568 (3)0.0452 (8)
H8A−0.36900.70470.07800.054*
C8A−0.1995 (3)0.67373 (17)0.2279 (3)0.0379 (7)
C9−0.1474 (3)0.59996 (18)0.1804 (3)0.0413 (7)
N10−0.0298 (3)0.55973 (14)0.2639 (2)0.0384 (6)
N1'0.7209 (3)0.34893 (18)0.8577 (2)0.0585 (8)
C1'0.3643 (3)0.49063 (17)0.6292 (2)0.0375 (7)
C2'0.4284 (4)0.42189 (18)0.5885 (3)0.0445 (8)
H2'A0.39020.40640.50810.053*
C3'0.5455 (4)0.37605 (19)0.6621 (3)0.0451 (8)
H3'A0.58470.33100.63030.054*
C4'0.6065 (3)0.39601 (18)0.7836 (3)0.0426 (8)
C5'0.5453 (4)0.46547 (19)0.8262 (3)0.0462 (8)
H5'A0.58390.48120.90640.055*
C6'0.4282 (3)0.51068 (18)0.7500 (3)0.0423 (8)
H6'A0.39040.55660.78080.051*
C7'0.2395 (3)0.54038 (17)0.5554 (3)0.0383 (7)
H7'A0.21350.58640.59340.046*
C8'0.7668 (5)0.3632 (3)0.9855 (3)0.0906 (15)
H8'A0.67530.36231.01640.136*
H8'B0.81710.41541.00150.136*
H8'C0.83860.32141.02430.136*
C9'0.7788 (4)0.2766 (2)0.8122 (3)0.0617 (10)
H9'A0.82560.29120.74820.093*
H9'B0.69320.23970.78180.093*
H9'C0.85620.25090.87620.093*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0632 (15)0.0588 (14)0.0371 (13)0.0057 (12)0.0006 (11)−0.0039 (11)
C10.056 (2)0.0412 (18)0.0468 (19)0.0081 (16)0.0043 (16)−0.0075 (15)
C20.0460 (18)0.0406 (18)0.0415 (17)0.0033 (15)0.0072 (15)−0.0009 (14)
C30.0345 (16)0.0388 (16)0.0379 (16)−0.0011 (13)0.0079 (13)0.0008 (13)
C3A0.0346 (16)0.0360 (16)0.0353 (15)−0.0039 (13)0.0079 (13)−0.0016 (13)
N40.0348 (14)0.0373 (14)0.0418 (14)0.0027 (11)0.0039 (11)−0.0016 (11)
C4A0.0363 (17)0.0348 (16)0.0427 (17)−0.0020 (13)0.0111 (14)0.0033 (13)
C50.0415 (18)0.0440 (19)0.0507 (19)0.0007 (15)0.0093 (15)−0.0026 (15)
C60.0465 (19)0.0432 (18)0.059 (2)0.0066 (15)0.0149 (17)0.0039 (16)
C70.0395 (18)0.0464 (19)0.057 (2)0.0056 (15)0.0124 (15)0.0178 (16)
C80.0378 (17)0.0506 (19)0.0455 (18)0.0015 (15)0.0079 (14)0.0109 (15)
C8A0.0375 (17)0.0371 (17)0.0384 (16)−0.0026 (13)0.0088 (13)0.0044 (13)
C90.0400 (18)0.0453 (18)0.0370 (17)−0.0056 (14)0.0072 (14)0.0017 (14)
N100.0401 (14)0.0368 (14)0.0356 (13)0.0023 (11)0.0051 (11)−0.0017 (11)
N1'0.0514 (17)0.0607 (19)0.0523 (17)0.0112 (15)−0.0062 (14)0.0008 (14)
C1'0.0340 (16)0.0379 (17)0.0383 (16)−0.0034 (13)0.0052 (13)−0.0011 (13)
C2'0.0471 (19)0.0445 (18)0.0385 (17)−0.0001 (15)0.0054 (14)−0.0029 (14)
C3'0.0454 (19)0.0449 (18)0.0431 (18)0.0035 (15)0.0082 (15)0.0014 (15)
C4'0.0336 (17)0.0441 (18)0.0462 (18)−0.0052 (14)0.0033 (14)0.0058 (15)
C5'0.0423 (18)0.0491 (19)0.0414 (18)−0.0042 (16)0.0004 (15)−0.0028 (15)
C6'0.0411 (17)0.0412 (17)0.0426 (17)−0.0020 (14)0.0071 (14)−0.0046 (14)
C7'0.0347 (16)0.0368 (16)0.0430 (17)0.0010 (13)0.0096 (14)−0.0007 (13)
C8'0.092 (3)0.103 (3)0.056 (2)0.034 (3)−0.017 (2)0.000 (2)
C9'0.048 (2)0.055 (2)0.075 (2)0.0088 (18)0.0019 (18)0.0083 (19)

Geometric parameters (Å, °)

O1—C91.225 (3)C8A—C91.450 (4)
C1—N101.461 (4)C9—N101.382 (4)
C1—C21.529 (4)N1'—C4'1.375 (4)
C1—H1A0.9700N1'—C8'1.434 (4)
C1—H1B0.9700N1'—C9'1.442 (4)
C2—C31.500 (4)C1'—C6'1.392 (4)
C2—H2A0.9700C1'—C2'1.395 (4)
C2—H2B0.9700C1'—C7'1.452 (4)
C3—C7'1.338 (4)C2'—C3'1.374 (4)
C3—C3A1.465 (4)C2'—H2'A0.9300
C3A—N41.295 (3)C3'—C4'1.395 (4)
C3A—N101.378 (3)C3'—H3'A0.9300
N4—C4A1.394 (4)C4'—C5'1.402 (4)
C4A—C51.400 (4)C5'—C6'1.381 (4)
C4A—C8A1.403 (4)C5'—H5'A0.9300
C5—C61.374 (4)C6'—H6'A0.9300
C5—H5A0.9300C7'—H7'A0.9300
C6—C71.390 (4)C8'—H8'A0.9600
C6—H6A0.9300C8'—H8'B0.9600
C7—C81.366 (4)C8'—H8'C0.9600
C7—H7A0.9300C9'—H9'A0.9600
C8—C8A1.397 (4)C9'—H9'B0.9600
C8—H8A0.9300C9'—H9'C0.9600
N10—C1—C2103.9 (2)C3A—N10—C9123.8 (2)
N10—C1—H1A111.0C3A—N10—C1113.7 (2)
C2—C1—H1A111.0C9—N10—C1122.5 (2)
N10—C1—H1B111.0C4'—N1'—C8'120.5 (3)
C2—C1—H1B111.0C4'—N1'—C9'120.7 (3)
H1A—C1—H1B109.0C8'—N1'—C9'118.2 (3)
C3—C2—C1106.4 (2)C6'—C1'—C2'115.5 (3)
C3—C2—H2A110.4C6'—C1'—C7'119.7 (3)
C1—C2—H2A110.4C2'—C1'—C7'124.8 (3)
C3—C2—H2B110.4C3'—C2'—C1'122.8 (3)
C1—C2—H2B110.4C3'—C2'—H2'A118.6
H2A—C2—H2B108.6C1'—C2'—H2'A118.6
C7'—C3—C3A122.2 (3)C2'—C3'—C4'121.1 (3)
C7'—C3—C2130.2 (3)C2'—C3'—H3'A119.4
C3A—C3—C2107.6 (2)C4'—C3'—H3'A119.4
N4—C3A—N10124.8 (3)N1'—C4'—C3'121.0 (3)
N4—C3A—C3126.9 (3)N1'—C4'—C5'121.8 (3)
N10—C3A—C3108.3 (2)C3'—C4'—C5'117.1 (3)
C3A—N4—C4A115.4 (2)C6'—C5'—C4'120.5 (3)
N4—C4A—C5117.9 (3)C6'—C5'—H5'A119.8
N4—C4A—C8A123.4 (3)C4'—C5'—H5'A119.8
C5—C4A—C8A118.7 (3)C5'—C6'—C1'123.0 (3)
C6—C5—C4A120.7 (3)C5'—C6'—H6'A118.5
C6—C5—H5A119.6C1'—C6'—H6'A118.5
C4A—C5—H5A119.6C3—C7'—C1'129.6 (3)
C5—C6—C7120.0 (3)C3—C7'—H7'A115.2
C5—C6—H6A120.0C1'—C7'—H7'A115.2
C7—C6—H6A120.0N1'—C8'—H8'A109.5
C8—C7—C6120.4 (3)N1'—C8'—H8'B109.5
C8—C7—H7A119.8H8'A—C8'—H8'B109.5
C6—C7—H7A119.8N1'—C8'—H8'C109.5
C7—C8—C8A120.3 (3)H8'A—C8'—H8'C109.5
C7—C8—H8A119.8H8'B—C8'—H8'C109.5
C8A—C8—H8A119.8N1'—C9'—H9'A109.5
C8—C8A—C4A119.8 (3)N1'—C9'—H9'B109.5
C8—C8A—C9120.7 (3)H9'A—C9'—H9'B109.5
C4A—C8A—C9119.5 (3)N1'—C9'—H9'C109.5
O1—C9—N10120.5 (3)H9'A—C9'—H9'C109.5
O1—C9—C8A126.4 (3)H9'B—C9'—H9'C109.5
N10—C9—C8A113.1 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2264).

References

  • Al-Shamma, A., Drake, S., Flynn, D. L., Mitscher, L. A., Park, Y. H., Rao, G. S. R., Simpson, A., Swayze, J. K., Veysoglu, T. & Wu, S. T. S. (1981). J. Nat. Prod.44, 745–747. [PubMed]
  • Barnes, J. C., Low, J. N., Paton, J. D., Dunn, A. D. & Kinnear, K. I. (1985). Acta Cryst. C41, 282–284.
  • Chatterjee, A. & Ganguly, M. (1968). Phytochemistry, 7, 307–311.
  • Elmuradov, B. Zh., Khodzhaniyazov, Kh. U. & Shakhidoyatov, Kh. M. (2009). Republican scientific–practical conference. Actual problems of Chemistry, Samarkand, vol. 1, p. 32.
  • Jahng, K. C., Kim, S. I., Kim, D. H., Seo, C. S., Son, J. K., Lee, S. H., Lee, E. S. & Jahng, Y. (2008). Chem. Pharm. Bull.56, 607–609. [PubMed]
  • Johne, S. (1981). Pharmazie, 36, 583–596. [PubMed]
  • Shakhidoyatov, Kh. M. & Kaysarov, I. (1998). Chem. Nat. Comp.34, 59–61.
  • Shakhidoyatov, Kh. M., Yamankulov, M. Ya. & Kadyrov, Ch. Sh. (1977). Khim. Prir. Soedin.4, 552–556.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1997). STADI4 and X-RED Stoe & Cie, Darmstadt, Germany.
  • Telezhenetskaya, M. V. & Yunusov, S. Yu. (1977). Khim. Prir. Soedin.6, 731–743.
  • Wu, X. Y., Qin, G. W., Cheung, K. K. & Cheng, K. F. (1997). Tetrahedron, 53, 13323–13328.
  • Yunusov, S. Yu., Tulyaganov, N., Telezhenetskaya, M. V., Sadritdinov, F. & Khashimov, Kh. (1978). USSR Patent No. 605614; ’Anticholinesterase agent’, Byull. Izobret., No. 17.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography