PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1636.
Published online 2010 June 16. doi:  10.1107/S1600536810021744
PMCID: PMC3006832

1,3,5,7-Tetra­kis(4-iodo­phen­yl)adamantane benzene tetra­solvate

Abstract

The title mol­ecule, C34H28I4·4C6H6, has crystallographic An external file that holds a picture, illustration, etc.
Object name is e-66-o1636-efi1.jpg symmetry and crystallizes with four symmetry-related benzene solvent mol­ecules. The phenyl group is eclipsed with one of the adamantane C—C bonds. The tetra­phenyl­adamantane units and the benzene solvent mol­ecules are connected by weak inter­molecular phen­yl–benzene C—H(...)π and benzene–benzene C—H(...)π inter­actions. In the crystal, mol­ecules are linked along the c-axis direction via the iodo­phenyl groups by a combination of weak inter­molecular I(...)I [3.944 (1) Å] and I(...)π(phen­yl) [3.608 (6) and 3.692 (5) Å] inter­actions.

Related literature

For the preparation of the title compound, see: Li et al. (2002 [triangle]). For the crystal structure of a related compound, see: Boldog et al. (2009 [triangle]). For inter­molecular inter­actions of I atoms, see: Pedireddi et al. (1994 [triangle]); Thaimattam et al. (1998 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-o1636-scheme1.jpg

Experimental

Crystal data

  • C34H28I4·4C6H6
  • M r = 1256.60
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-66-o1636-efi9.jpg
  • a = 18.883 (3) Å
  • c = 7.2442 (19) Å
  • V = 2583.1 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.45 mm−1
  • T = 164 K
  • 0.60 × 0.20 × 0.12 mm

Data collection

  • Siemens SMART 1K CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.509, T max = 0.751
  • 35313 measured reflections
  • 2953 independent reflections
  • 2365 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.105
  • S = 1.05
  • 2953 reflections
  • 141 parameters
  • H-atom parameters constrained
  • Δρmax = 1.76 e Å−3
  • Δρmin = −0.82 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1263 Friedel pairs
  • Flack parameter: −0.01 (4)

Data collection: SMART (Siemens, 1995 [triangle]); cell refinement: SMART; data reduction: SAINT (Siemens, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021744/lh5063sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021744/lh5063Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound was prepared as a precursor for the synthesis of EPR-active tetrahedral model systems.

The asymmetric unit contains a quarter of a 1,3,5,7-tetrakis(4-iodophenyl)adamantane molecule and one benzene solvent molecule. The molecular structure is shown in Fig. 1. The substituted adamantane molecule has 4 symmetry. The conformation of the tetraphenyladamantane unit is very similar to the conformation in the crystal structure of 1,3,5,7-tetraphenyladamantane (Boldog et al., 2009), with the phenyl group eclipsed with one of the adamantane C—C bonds (torsion angle C5—C4—C2—C3i = 5.7 (6)° [symmetry i: y, 1 - x, 1 - z]).

The crystal packing is shown in Fig. 2. The tetraphenyladamantane and the benzene solvent molecules are connected by intermolecular C—H···π interactions (Table 1, Cg1 and Cg2 represent the midpoint of the C13—C14 bond and the centroid of the C10—C15 ring respectively). There is a C—H···π contact between the phenyl ring and a benzene solvent molecule [angle between planes of rings: 72.9 (2)°]. The Cphenyl—H bond does not point to the center of the benzene ring, but closer to the midpoint of the C13—C14 bond. The benzene solvent molecules are connected along the c direction by an additional C—H···π contact. The angle between the planes of the donor and acceptor benzene molecules is 83.3 (2)° and the donor C—H bond points closely to the center of the acceptor ring.

Each C—I bond points to the iodophenyl group of a neighboring molecule as shown in Fig. 3. The shortest contact distances are: I1···I1i = 3.944 (1) Å, I1···C6i = 3.608 (6)Å and I1···C7i = 3.692 (5)Å (symmetry i: 1/2 - y, 1/2 - x, -1/2 + z). The angles for these contacts are: C7—I1···I1i = 158.6 (1)°, C7—I1···C6i = 153.9 (2)° and C7—I1···C7i = 167.0 (2)°. This combination of weak interactions link the 1,3,5,7-tetrakis(4-iodophenyl)adamantane molecules along the c direction. The significance of these interactions for crystal packing has been discussed by Pedireddi et al. (1994) and Thaimattam et al. (1998).

Experimental

The title compound was prepared as described by Li et al. (2002). Single crystals were obtained by recrystallization of the compound from benzene. The crystals rapidly decomposed in the air at room temperature. Therefore a crystal was taken from the mother liquor and was rapidly cooled to 164 K.

Refinement

The H atoms were positioned geometrically and treated as riding: Cnon-planar—H=0.99 Å, Cplanar—H=0.95Å and Uiso(H)=1.2Ueq(C). The absolute structure was determined using 1263 Friedel pairs.

Figures

Fig. 1.
The structure of the title compound shown with 50% probability displacement ellipsoids. The H atoms are drawn as small spheres of arbitrary radius. Unlabelled atoms are related to labelled atoms by 4 symmetry.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis. C—H···π contacts are shown as dotted lines.
Fig. 3.
Section of the crystal structure showing the linking of the 1,3,5,7-tetrakis(4-iodophenyl)adamantane molecules by intermolecular contacts between the iodophenyl groups. The symmetry codes are i: 1/2 - y, 1/2 - x, -1/2 + z and ii: 1/2 - y, 1/2 - x, 1/2 ...

Crystal data

C34H28I4·4C6H6Dx = 1.616 Mg m3
Mr = 1256.60Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 103 reflections
Hall symbol: P -4 2nθ = 3–23°
a = 18.883 (3) ŵ = 2.45 mm1
c = 7.2442 (19) ÅT = 164 K
V = 2583.1 (9) Å3Rod, colorless
Z = 20.60 × 0.20 × 0.12 mm
F(000) = 1224

Data collection

Siemens SMART 1K CCD diffractometer2953 independent reflections
Radiation source: normal-focus sealed tube2365 reflections with I > 2σ(I)
graphiteRint = 0.063
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −24→24
Tmin = 0.509, Tmax = 0.751k = −24→24
35313 measured reflectionsl = −9→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.105w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2953 reflectionsΔρmax = 1.76 e Å3
141 parametersΔρmin = −0.82 e Å3
0 restraintsAbsolute structure: Flack (1983), 1263 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
I10.25295 (2)0.30544 (2)−0.23303 (6)0.05317 (17)
C10.50000.50000.2564 (9)0.0199 (12)
H1A0.52580.46640.17600.024*0.50
H1B0.47420.53360.17600.024*0.50
C20.4466 (2)0.4589 (2)0.3747 (6)0.0195 (9)
C30.4875 (3)0.4074 (2)0.5016 (6)0.0209 (9)
H3A0.45340.38150.58040.025*
H3B0.51290.37230.42480.025*
C40.3977 (2)0.4186 (2)0.2437 (6)0.0222 (8)
C50.3250 (2)0.4344 (2)0.2272 (7)0.0274 (10)
H5A0.30390.46770.30870.033*
C60.2844 (3)0.4020 (3)0.0937 (6)0.0287 (11)
H6A0.23540.41310.08420.034*
C70.3139 (3)0.3534 (3)−0.0265 (6)0.0310 (11)
C80.3848 (3)0.3345 (3)−0.0094 (7)0.0282 (11)
H8A0.40520.3000−0.08850.034*
C90.4250 (3)0.3675 (3)0.1261 (6)0.0279 (10)
H9A0.47340.35440.13880.034*
C100.4526 (5)0.1182 (4)0.7048 (12)0.083 (2)
H10A0.43840.09030.80730.099*
C110.5184 (5)0.1096 (5)0.6257 (15)0.081 (3)
H11A0.55010.07480.67190.097*
C120.5372 (4)0.1500 (4)0.4852 (13)0.072 (2)
H12A0.58310.14490.43350.086*
C130.4918 (4)0.1992 (4)0.4127 (10)0.066 (2)
H13A0.50550.22680.30890.080*
C140.4265 (4)0.2084 (4)0.4909 (11)0.0612 (19)
H14A0.39470.24320.44450.073*
C150.4085 (5)0.1681 (4)0.6319 (14)0.078 (3)
H15A0.36280.17400.68490.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0530 (2)0.0577 (3)0.0488 (2)0.00188 (19)−0.0243 (2)−0.0168 (2)
C10.023 (3)0.022 (3)0.015 (3)0.000 (2)0.0000.000
C20.021 (2)0.023 (2)0.015 (2)−0.0026 (18)−0.0018 (17)−0.0024 (17)
C30.026 (2)0.020 (2)0.017 (2)−0.001 (2)−0.0010 (18)−0.0001 (17)
C40.026 (2)0.026 (2)0.015 (2)−0.0043 (16)0.0018 (19)0.0027 (19)
C50.029 (2)0.024 (2)0.029 (2)−0.0014 (17)0.006 (2)0.005 (2)
C60.019 (2)0.031 (3)0.036 (3)−0.006 (2)−0.002 (2)0.000 (2)
C70.031 (3)0.035 (3)0.027 (2)−0.008 (2)−0.009 (2)0.001 (2)
C80.030 (3)0.029 (3)0.026 (2)0.002 (2)−0.002 (2)−0.004 (2)
C90.024 (2)0.028 (3)0.032 (2)0.001 (2)−0.002 (2)−0.002 (2)
C100.105 (7)0.070 (5)0.073 (6)−0.003 (5)0.014 (5)0.010 (4)
C110.071 (5)0.066 (5)0.106 (7)−0.001 (5)−0.030 (5)0.012 (5)
C120.045 (4)0.062 (5)0.109 (7)−0.011 (4)0.013 (4)−0.020 (5)
C130.080 (5)0.045 (4)0.074 (5)−0.020 (4)0.013 (4)−0.020 (4)
C140.065 (5)0.029 (4)0.089 (5)−0.007 (3)−0.004 (4)−0.008 (3)
C150.074 (6)0.053 (5)0.108 (7)0.000 (4)0.018 (5)−0.027 (5)

Geometric parameters (Å, °)

I1—C72.093 (5)C7—C81.391 (7)
C1—C2i1.535 (5)C8—C91.388 (6)
C1—C21.535 (5)C8—H8A0.9500
C1—H1A0.9900C9—H9A0.9500
C1—H1B0.9900C10—C151.364 (11)
C2—C41.528 (6)C10—C111.378 (12)
C2—C3ii1.540 (6)C10—H10A0.9500
C2—C31.545 (6)C11—C121.321 (12)
C3—C2iii1.540 (6)C11—H11A0.9500
C3—H3A0.9900C12—C131.369 (11)
C3—H3B0.9900C12—H12A0.9500
C4—C91.387 (6)C13—C141.368 (10)
C4—C51.409 (6)C13—H13A0.9500
C5—C61.378 (6)C14—C151.319 (11)
C5—H5A0.9500C14—H14A0.9500
C6—C71.382 (7)C15—H15A0.9500
C6—H6A0.9500
C2i—C1—C2112.1 (5)C6—C7—C8120.1 (4)
C2i—C1—H1A109.2C6—C7—I1121.1 (4)
C2—C1—H1A109.2C8—C7—I1118.8 (4)
C2i—C1—H1B109.2C9—C8—C7118.4 (4)
C2—C1—H1B109.2C9—C8—H8A120.8
H1A—C1—H1B107.9C7—C8—H8A120.8
C4—C2—C1107.6 (3)C4—C9—C8122.8 (4)
C4—C2—C3ii113.5 (4)C4—C9—H9A118.6
C1—C2—C3ii107.9 (3)C8—C9—H9A118.6
C4—C2—C3111.0 (4)C15—C10—C11118.1 (8)
C1—C2—C3108.7 (3)C15—C10—H10A120.9
C3ii—C2—C3107.9 (3)C11—C10—H10A120.9
C2iii—C3—C2111.9 (4)C12—C11—C10119.6 (9)
C2iii—C3—H3A109.2C12—C11—H11A120.2
C2—C3—H3A109.2C10—C11—H11A120.2
C2iii—C3—H3B109.2C11—C12—C13121.3 (8)
C2—C3—H3B109.2C11—C12—H12A119.3
H3A—C3—H3B107.9C13—C12—H12A119.3
C9—C4—C5117.3 (4)C14—C13—C12119.5 (8)
C9—C4—C2120.2 (4)C14—C13—H13A120.3
C5—C4—C2122.4 (4)C12—C13—H13A120.3
C6—C5—C4120.5 (4)C15—C14—C13118.7 (8)
C6—C5—H5A119.7C15—C14—H14A120.7
C4—C5—H5A119.7C13—C14—H14A120.7
C5—C6—C7120.8 (5)C14—C15—C10122.8 (8)
C5—C6—H6A119.6C14—C15—H15A118.6
C7—C6—H6A119.6C10—C15—H15A118.6
C2i—C1—C2—C4−178.4 (4)C4—C5—C6—C70.0 (7)
C2i—C1—C2—C3ii58.7 (3)C5—C6—C7—C82.5 (7)
C2i—C1—C2—C3−58.1 (3)C5—C6—C7—I1−178.8 (3)
C4—C2—C3—C2iii175.9 (4)C6—C7—C8—C9−2.3 (7)
C1—C2—C3—C2iii57.7 (5)I1—C7—C8—C9179.0 (3)
C3ii—C2—C3—C2iii−59.1 (3)C5—C4—C9—C82.9 (7)
C1—C2—C4—C961.9 (5)C2—C4—C9—C8−172.9 (4)
C3ii—C2—C4—C9−178.8 (4)C7—C8—C9—C4−0.5 (7)
C3—C2—C4—C9−57.0 (5)C15—C10—C11—C121.1 (14)
C1—C2—C4—C5−113.7 (4)C10—C11—C12—C13−1.9 (13)
C3ii—C2—C4—C55.7 (6)C11—C12—C13—C142.2 (12)
C3—C2—C4—C5127.4 (4)C12—C13—C14—C15−1.7 (11)
C9—C4—C5—C6−2.6 (6)C13—C14—C15—C100.9 (12)
C2—C4—C5—C6173.1 (4)C11—C10—C15—C14−0.6 (13)

Symmetry codes: (i) −x+1, −y+1, z; (ii) y, −x+1, −z+1; (iii) −y+1, x, −z+1.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 represent the midpoint of the C13—C14 bond and the centroid of the C10–C15 ring, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg1ii0.952.913.833 (9)163
C10—H10A···Cg2iv0.952.853.733 (9)156

Symmetry codes: (ii) y, −x+1, −z+1; (iv) −y+1/2, −x+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5063).

References

  • Boldog, I., Lysenko, A. B., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2009). Acta Cryst. C65, o248–o252. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Li, Q., Rukavishnikov, A. V., Petukhov, P. A., Zaikova, T. O. & Keana, J. F. W. (2002). Org. Lett.4, 3631–3634. [PubMed]
  • Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1995). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Thaimattam, R., Reddy, D. S., Xue, F., Mak, T. C. W., Nangia, A. & Desiraju, G. R. (1998). New J. Chem. pp. 143–148.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography