PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m853–m854.
Published online 2010 June 26. doi:  10.1107/S160053681002413X
PMCID: PMC3006831

fac-Tris(4-amino­benzohydroxamato)iron(III) ethanol solvate

Abstract

In the structure of the title compound, [Fe(C7H7N2O2)3]·CH3CH2OH, the FeIII atom is in a distorted octa­hedral O6 environment with the three hydroxamate O atoms (and the three carbonyl O atoms) arranged in a fac configuration and one of the hydroxamate ligands being puckered. The methyl C atom of the ethanol solvent mol­ecule is disordered over two positions with occupancies of 0.626 (13) and 0.374 (13), respectively. The cocrystallized ethanol mol­ecule is hydrogen bonded to one of the hydroxamate O atoms. O—H(...)O and N—H(...)O inter­actions generate infinite three-dimensional networks along [100], [010] and [001].

Related literature

For a detailed account of the mol­ecular and crystal structures of related tris­(hydroxamato)FeIII complexes, see: Rio-Echevarria et al. (2008 [triangle]); Mulcahy et al. (2007 [triangle]); Marmion et al. (2000 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]); for pseudorotation parameters, see: Rao et al. (1981 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m853-scheme1.jpg

Experimental

Crystal data

  • [Fe(C7H7N2O2)3]·C2H6O
  • M r = 555.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m853-efi1.jpg
  • a = 10.6232 (18) Å
  • b = 10.6455 (18) Å
  • c = 13.225 (2) Å
  • α = 107.550 (3)°
  • β = 91.085 (4)°
  • γ = 112.217 (3)°
  • V = 1305.1 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.63 mm−1
  • T = 100 K
  • 0.30 × 0.20 × 0.03 mm

Data collection

  • Bruker SMART CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.883, T max = 0.981
  • 24614 measured reflections
  • 5739 independent reflections
  • 5065 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.094
  • S = 1.06
  • 5739 reflections
  • 433 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002413X/sj5023sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002413X/sj5023Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Irish Government under its Programme for Research in Third Level Institutions (Cycle 3), Enterprise Ireland (International Collaboration programme) and EU COST D8 for support.

supplementary crystallographic information

Comment

The FeIII core is in a distorted octahedral O6 environment with the three 4-aminophenylhydroxamato ligands coordinated through both O-atoms to form stable five-membered chelates (Fig. 1). The complex has a fac geometric configuration defined by the positioning of the three hydroxamate or the three carbonyl O atoms. The Fe—O3—C8—N3—O4 and Fe—O5—C15—N5—O6 five membered rings are not puckered whereas the Fe—O1—C1—N1—O2 ring exhibits a puckered configuration with the closest pucker descriptor being twisted on O2—Fe. The Cremer and Pople puckering paramaters (Cremer & Pople, 1975) are Q2 = 0.120 (2) Å & [var phi]2 = 330.0 (9)° and the pseudorotation parameters (Rao et al., 1981) are P = 130.8 (6)° and τ(M) = 11.2 (1)° for reference bond Fe—O1. The co-crystallized ethanol molecule is hydrogen bonded to one of the hydroxamate oxygen atoms through strong O–H···O bond (O7 H1O7 O6 interaction in Table 2). The O–H···O and N–H···O interactions (Table 2) form a set of clusters generating infinite two dimensional networks along the base vectors [0 1 0] and [1 0 0] and along the plane (0 0 1). These clusters then assemble to form infinite three dimensional networks (Fig. 2) along the base vectors [1 0 0], [0 1 0] and [0 0 1].

Experimental

FeCl3.6H2O (59.3 mg, 0.22 mmol) in water (5 ml), was added to a solution of 4-aminophenylhydroxamic acid, (100 mg, 0.66 mmol) in ethanol (15 ml). The pH of the resulting solution was then raised to 5.7 using 0.1 M NaOH solution whereupon a dark red precipitate was obtained. This was removed by filtration and the filtrate was left to stand at room temperature for two months whereupon very dark red crystals were obtained. These were collected by filtration and dried. Yield (100 mg, 0.18 mmol, 82%). Elemental analysis (%), calcd C23H27N6O7Fe: C, 49.56; H, 5.26; N, 15.08; Fe, 10.02; found C 49.01, H 5.02, N 15.03, Fe 9.77. IR (KBr Disc); νmax 3345br, 3211br, 1604 s, 1525 s, 1484 s cm-1.

Refinement

All H-atoms (except those attached to the methylene and the methyl carbon atoms of the ethanol solvate) were located in difference maps and their positions and isotropic displacement parameters were freely refined. The CH2 and CH3 H atoms of the solvate were constrained to ride on their parent C atoms.

Figures

Fig. 1.
The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius
Fig. 2.
The molecular packing viewed down the b-axis. Dashed lines represent the O—H···O and N—H···O interactions within the lattice.

Crystal data

[Fe(C7H7N2O2)3]·C2H6OZ = 2
Mr = 555.36F(000) = 578
Triclinic, P1Dx = 1.413 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6232 (18) ÅCell parameters from 4743 reflections
b = 10.6455 (18) Åθ = 2.2–24.9°
c = 13.225 (2) ŵ = 0.63 mm1
α = 107.550 (3)°T = 100 K
β = 91.085 (4)°Plate, red
γ = 112.217 (3)°0.30 × 0.20 × 0.03 mm
V = 1305.1 (4) Å3

Data collection

Bruker SMART CCD area detector diffractometer5739 independent reflections
Radiation source: fine-focus sealed tube5065 reflections with I > 2σ(I)
graphiteRint = 0.044
Detector resolution: 8.366 pixels mm-1θmax = 27.1°, θmin = 1.6°
[var phi] and ω scansh = −13→13
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)k = −13→13
Tmin = 0.883, Tmax = 0.981l = −16→16
24614 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0438P)2 + 0.6552P] where P = (Fo2 + 2Fc2)/3
5739 reflections(Δ/σ)max = 0.004
433 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Fe0.13879 (3)0.36163 (3)0.16284 (2)0.01220 (9)
O20.06647 (14)0.16143 (14)0.06621 (11)0.0180 (3)
N1−0.05305 (18)0.07800 (18)0.09477 (14)0.0187 (4)
H1N1−0.087 (3)−0.007 (3)0.052 (2)0.035 (7)*
C1−0.0862 (2)0.1334 (2)0.18804 (16)0.0161 (4)
O1−0.01237 (14)0.26557 (14)0.24206 (11)0.0162 (3)
C2−0.2049 (2)0.0445 (2)0.22618 (16)0.0179 (4)
C3−0.2669 (2)0.1117 (2)0.30398 (18)0.0239 (5)
H3−0.231 (3)0.211 (3)0.331 (2)0.039 (7)*
C4−0.3816 (2)0.0325 (3)0.3394 (2)0.0279 (5)
H4−0.425 (3)0.078 (3)0.391 (2)0.031 (7)*
C5−0.4376 (2)−0.1172 (2)0.29942 (18)0.0243 (5)
N2−0.5509 (2)−0.1970 (3)0.3375 (2)0.0340 (5)
H1N2−0.595 (3)−0.277 (3)0.296 (2)0.040 (9)*
H2N2−0.602 (3)−0.147 (3)0.364 (2)0.048 (9)*
C6−0.3739 (3)−0.1848 (2)0.2234 (2)0.0317 (5)
H6−0.410 (3)−0.288 (3)0.198 (2)0.043 (8)*
C7−0.2604 (2)−0.1056 (2)0.1865 (2)0.0286 (5)
H7−0.219 (3)−0.152 (3)0.136 (2)0.037 (7)*
O40.04007 (15)0.41933 (14)0.06861 (11)0.0175 (3)
N30.03983 (18)0.55267 (18)0.11997 (14)0.0188 (4)
H1N30.008 (3)0.585 (3)0.078 (2)0.029 (7)*
C80.1040 (2)0.6232 (2)0.21800 (15)0.0146 (4)
O30.15716 (14)0.56033 (14)0.26357 (10)0.0149 (3)
C90.1150 (2)0.7704 (2)0.27167 (16)0.0154 (4)
C100.1173 (2)0.8613 (2)0.21373 (17)0.0196 (4)
H100.116 (2)0.832 (2)0.1403 (18)0.014 (5)*
C110.1315 (2)1.0008 (2)0.26579 (17)0.0205 (4)
H110.135 (2)1.060 (2)0.2244 (17)0.015 (5)*
C120.1403 (2)1.0527 (2)0.37769 (17)0.0184 (4)
N40.1479 (2)1.1887 (2)0.42768 (17)0.0238 (4)
H1N40.165 (3)1.217 (3)0.494 (2)0.027 (7)*
H2N40.161 (3)1.247 (3)0.388 (2)0.042 (8)*
C130.1409 (2)0.9625 (2)0.43591 (17)0.0182 (4)
H130.148 (2)0.995 (3)0.508 (2)0.024 (6)*
C140.1295 (2)0.8241 (2)0.38380 (16)0.0168 (4)
H140.129 (2)0.765 (2)0.4247 (17)0.010 (5)*
O60.30277 (14)0.41024 (15)0.09015 (11)0.0178 (3)
N50.41597 (18)0.41538 (19)0.14684 (14)0.0173 (4)
H1N50.480 (2)0.412 (2)0.1112 (18)0.016 (6)*
C150.4028 (2)0.3985 (2)0.24097 (15)0.0145 (4)
O50.28464 (14)0.37299 (14)0.27232 (11)0.0157 (3)
C160.5226 (2)0.4146 (2)0.30955 (15)0.0154 (4)
C170.5013 (2)0.3612 (2)0.39495 (16)0.0178 (4)
H170.408 (2)0.311 (2)0.4045 (18)0.021 (6)*
C180.6104 (2)0.3822 (2)0.46526 (16)0.0175 (4)
H180.592 (2)0.346 (3)0.5211 (19)0.024 (6)*
C190.7457 (2)0.4587 (2)0.45299 (15)0.0158 (4)
N60.8551 (2)0.4808 (2)0.52404 (15)0.0198 (4)
H1N60.835 (2)0.467 (2)0.5823 (18)0.008 (5)*
H2N60.927 (3)0.549 (3)0.529 (2)0.037 (8)*
C200.7675 (2)0.5081 (2)0.36565 (17)0.0186 (4)
H200.854 (2)0.559 (2)0.3568 (17)0.015 (5)*
C210.6581 (2)0.4880 (2)0.29572 (17)0.0187 (4)
H210.677 (2)0.527 (2)0.2400 (17)0.012 (5)*
O70.62865 (18)0.41913 (19)0.03203 (14)0.0300 (4)
H1O70.651 (3)0.473 (3)0.000 (2)0.030 (7)*
C220.6632 (3)0.2992 (3)−0.0101 (2)0.0450 (7)
H22A0.76330.33040.00970.054*0.626 (13)
H22B0.64250.2649−0.08930.054*0.626 (13)
H22C0.59110.2283−0.07110.054*0.374 (13)
H22D0.75020.3321−0.03950.054*0.374 (13)
C23A0.5904 (9)0.1809 (6)0.0278 (5)0.048 (2)0.626 (13)
H23A0.59920.21680.10620.073*0.626 (13)
H23B0.62970.10880.00610.073*0.626 (13)
H23C0.49290.1371−0.00320.073*0.626 (13)
C23B0.6799 (14)0.2255 (11)0.0608 (8)0.052 (3)0.374 (13)
H23D0.70010.14320.02070.077*0.374 (13)
H23E0.59500.19140.09120.077*0.374 (13)
H23F0.75610.29170.11890.077*0.374 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe0.01437 (15)0.00964 (14)0.01186 (14)0.00477 (11)0.00097 (10)0.00273 (10)
O20.0186 (7)0.0124 (7)0.0189 (7)0.0040 (6)0.0068 (6)0.0023 (6)
N10.0189 (9)0.0108 (8)0.0199 (9)0.0027 (7)0.0037 (7)0.0002 (7)
C10.0155 (9)0.0125 (9)0.0187 (10)0.0061 (8)0.0006 (8)0.0028 (8)
O10.0176 (7)0.0102 (6)0.0168 (7)0.0036 (5)0.0032 (5)0.0015 (5)
C20.0178 (10)0.0148 (10)0.0201 (10)0.0057 (8)0.0022 (8)0.0058 (8)
C30.0252 (11)0.0143 (10)0.0286 (12)0.0054 (9)0.0085 (9)0.0052 (9)
C40.0281 (12)0.0259 (12)0.0317 (13)0.0118 (10)0.0146 (10)0.0106 (10)
C50.0181 (10)0.0253 (11)0.0301 (12)0.0043 (9)0.0001 (9)0.0161 (10)
N20.0229 (11)0.0333 (13)0.0448 (14)0.0024 (10)0.0056 (10)0.0229 (11)
C60.0296 (13)0.0151 (11)0.0439 (15)0.0021 (10)0.0070 (11)0.0099 (10)
C70.0299 (12)0.0150 (10)0.0382 (14)0.0087 (9)0.0126 (11)0.0051 (10)
O40.0266 (8)0.0127 (7)0.0132 (7)0.0111 (6)−0.0023 (6)0.0004 (5)
N30.0263 (9)0.0166 (9)0.0158 (9)0.0130 (7)−0.0014 (7)0.0033 (7)
C80.0161 (9)0.0137 (9)0.0142 (9)0.0061 (8)0.0024 (7)0.0050 (7)
O30.0191 (7)0.0115 (6)0.0140 (7)0.0063 (5)−0.0011 (5)0.0038 (5)
C90.0161 (9)0.0143 (9)0.0161 (9)0.0073 (8)0.0018 (7)0.0041 (8)
C100.0257 (11)0.0190 (10)0.0162 (10)0.0112 (9)0.0029 (8)0.0060 (8)
C110.0253 (11)0.0186 (10)0.0231 (11)0.0117 (9)0.0041 (9)0.0108 (9)
C120.0146 (9)0.0151 (10)0.0256 (11)0.0063 (8)0.0057 (8)0.0065 (8)
N40.0326 (11)0.0153 (9)0.0239 (11)0.0109 (8)0.0077 (8)0.0050 (8)
C130.0202 (10)0.0168 (10)0.0151 (10)0.0065 (8)0.0036 (8)0.0032 (8)
C140.0185 (10)0.0144 (9)0.0181 (10)0.0062 (8)0.0028 (8)0.0069 (8)
O60.0160 (7)0.0245 (8)0.0167 (7)0.0092 (6)0.0019 (6)0.0105 (6)
N50.0152 (8)0.0225 (9)0.0181 (9)0.0091 (7)0.0045 (7)0.0102 (7)
C150.0175 (10)0.0103 (9)0.0162 (9)0.0063 (7)0.0027 (8)0.0042 (7)
O50.0158 (7)0.0171 (7)0.0160 (7)0.0071 (6)0.0025 (5)0.0073 (6)
C160.0180 (10)0.0141 (9)0.0159 (9)0.0086 (8)0.0028 (8)0.0046 (8)
C170.0181 (10)0.0159 (10)0.0202 (10)0.0070 (8)0.0052 (8)0.0068 (8)
C180.0227 (10)0.0196 (10)0.0151 (10)0.0109 (8)0.0047 (8)0.0094 (8)
C190.0195 (10)0.0141 (9)0.0141 (9)0.0102 (8)0.0022 (8)0.0007 (7)
N60.0197 (10)0.0247 (10)0.0168 (9)0.0100 (8)0.0037 (7)0.0083 (8)
C200.0142 (10)0.0190 (10)0.0209 (10)0.0046 (8)0.0045 (8)0.0069 (8)
C210.0198 (10)0.0203 (10)0.0171 (10)0.0069 (8)0.0043 (8)0.0092 (8)
O70.0367 (10)0.0372 (10)0.0326 (9)0.0221 (8)0.0197 (8)0.0238 (8)
C220.0638 (19)0.0503 (17)0.0404 (16)0.0374 (16)0.0226 (14)0.0222 (14)
C23A0.063 (5)0.036 (3)0.058 (4)0.026 (3)0.021 (3)0.023 (3)
C23B0.048 (7)0.039 (5)0.069 (6)0.022 (5)−0.016 (5)0.015 (4)

Geometric parameters (Å, °)

Fe—O21.9615 (14)N4—H1N40.83 (3)
Fe—O61.9769 (14)N4—H2N40.90 (3)
Fe—O41.9822 (14)C13—C141.382 (3)
Fe—O52.0444 (14)C13—H130.90 (2)
Fe—O12.0470 (14)C14—H140.94 (2)
Fe—O32.0654 (13)O6—N51.379 (2)
O2—N11.383 (2)N5—C151.313 (3)
N1—C11.315 (3)N5—H1N50.84 (2)
N1—H1N10.84 (3)C15—O51.285 (2)
C1—O11.282 (2)C15—C161.474 (3)
C1—C21.466 (3)C16—C171.396 (3)
C2—C31.394 (3)C16—C211.400 (3)
C2—C71.396 (3)C17—C181.377 (3)
C3—C41.378 (3)C17—H170.96 (2)
C3—H30.93 (3)C18—C191.400 (3)
C4—C51.391 (3)C18—H180.92 (2)
C4—H40.94 (3)C19—N61.381 (3)
C5—N21.390 (3)C19—C201.396 (3)
C5—C61.395 (3)N6—H1N60.84 (2)
N2—H1N20.80 (3)N6—H2N60.82 (3)
N2—H2N20.90 (3)C20—C211.380 (3)
C6—C71.380 (3)C20—H200.90 (2)
C6—H60.96 (3)C21—H210.94 (2)
C7—H70.92 (3)O7—C221.417 (3)
O4—N31.378 (2)O7—H1O70.78 (3)
N3—C81.304 (3)C22—C23B1.438 (8)
N3—H1N30.86 (3)C22—C23A1.446 (5)
C8—O31.283 (2)C22—H22A0.9900
C8—C91.470 (3)C22—H22B0.9900
C9—C101.398 (3)C22—H22C0.9900
C9—C141.401 (3)C22—H22D0.9900
C10—C111.382 (3)C23A—H23A0.9800
C10—H100.92 (2)C23A—H23B0.9800
C11—C121.402 (3)C23A—H23C0.9800
C11—H110.95 (2)C23B—H23D0.9800
C12—N41.368 (3)C23B—H23E0.9800
C12—C131.402 (3)C23B—H23F0.9800
O2—Fe—O690.72 (6)C12—C13—H13119.8 (15)
O2—Fe—O492.73 (6)C13—C14—C9120.68 (18)
O6—Fe—O491.70 (6)C13—C14—H14119.0 (13)
O2—Fe—O5104.13 (6)C9—C14—H14120.3 (13)
O6—Fe—O578.92 (5)N5—O6—Fe112.13 (11)
O4—Fe—O5160.68 (6)C15—N5—O6117.38 (16)
O2—Fe—O179.40 (5)C15—N5—H1N5127.0 (15)
O6—Fe—O1162.99 (6)O6—N5—H1N5114.4 (15)
O4—Fe—O1102.49 (6)O5—C15—N5118.19 (17)
O5—Fe—O190.01 (6)O5—C15—C16121.59 (17)
O2—Fe—O3163.96 (6)N5—C15—C16120.18 (17)
O6—Fe—O3102.91 (6)C15—O5—Fe113.19 (12)
O4—Fe—O378.63 (5)C17—C16—C21118.42 (18)
O5—Fe—O386.98 (5)C17—C16—C15119.09 (18)
O1—Fe—O389.21 (5)C21—C16—C15122.41 (18)
N1—O2—Fe111.18 (11)C18—C17—C16121.01 (19)
C1—N1—O2117.85 (16)C18—C17—H17120.6 (14)
C1—N1—H1N1129.3 (18)C16—C17—H17118.4 (14)
O2—N1—H1N1112.1 (18)C17—C18—C19120.58 (19)
O1—C1—N1117.72 (18)C17—C18—H18118.3 (15)
O1—C1—C2122.48 (17)C19—C18—H18121.1 (15)
N1—C1—C2119.79 (17)N6—C19—C20120.91 (19)
C1—O1—Fe112.64 (12)N6—C19—C18120.57 (19)
C3—C2—C7118.2 (2)C20—C19—C18118.49 (18)
C3—C2—C1119.10 (18)C19—N6—H1N6115.4 (14)
C7—C2—C1122.69 (19)C19—N6—H2N6117 (2)
C4—C3—C2121.1 (2)H1N6—N6—H2N6115 (2)
C4—C3—H3119.6 (17)C21—C20—C19120.82 (19)
C2—C3—H3119.3 (17)C21—C20—H20119.1 (14)
C3—C4—C5120.8 (2)C19—C20—H20119.9 (14)
C3—C4—H4121.3 (16)C20—C21—C16120.62 (19)
C5—C4—H4117.9 (16)C20—C21—H21118.1 (13)
N2—C5—C4120.7 (2)C16—C21—H21121.3 (13)
N2—C5—C6121.0 (2)C22—O7—H1O7113 (2)
C4—C5—C6118.3 (2)O7—C22—C23B118.2 (4)
C5—N2—H1N2114 (2)O7—C22—C23A113.5 (3)
C5—N2—H2N2112.1 (19)C23B—C22—C23A37.0 (4)
H1N2—N2—H2N2114 (3)O7—C22—H22A108.9
C7—C6—C5121.0 (2)C23B—C22—H22A73.0
C7—C6—H6120.4 (17)C23A—C22—H22A108.9
C5—C6—H6118.6 (17)O7—C22—H22B108.9
C6—C7—C2120.6 (2)C23B—C22—H22B129.9
C6—C7—H7120.1 (17)C23A—C22—H22B108.9
C2—C7—H7119.2 (17)H22A—C22—H22B107.7
N3—O4—Fe111.77 (11)O7—C22—H22C107.7
C8—N3—O4118.68 (16)C23B—C22—H22C107.9
C8—N3—H1N3127.3 (17)C23A—C22—H22C75.6
O4—N3—H1N3113.2 (17)H22A—C22—H22C136.9
O3—C8—N3117.74 (17)H22B—C22—H22C37.7
O3—C8—C9122.39 (17)O7—C22—H22D107.7
N3—C8—C9119.87 (17)C23B—C22—H22D107.6
C8—O3—Fe113.04 (12)C23A—C22—H22D135.6
C10—C9—C14118.69 (18)H22A—C22—H22D39.5
C10—C9—C8121.53 (18)H22B—C22—H22D71.1
C14—C9—C8119.73 (17)H22C—C22—H22D107.1
C11—C10—C9120.73 (19)C22—C23A—H22C38.6
C11—C10—H10118.5 (13)C22—C23A—H23A109.5
C9—C10—H10120.7 (13)H22C—C23A—H23A142.0
C10—C11—C12120.61 (19)C22—C23A—H23B109.5
C10—C11—H11118.6 (13)H22C—C23A—H23B102.8
C12—C11—H11120.8 (13)C22—C23A—H23C109.5
N4—C12—C13121.5 (2)H22C—C23A—H23C76.8
N4—C12—C11119.96 (19)C22—C23B—H23D109.5
C13—C12—C11118.58 (18)C22—C23B—H23E109.5
C12—N4—H1N4114.5 (18)H23D—C23B—H23E109.5
C12—N4—H2N4117.8 (18)C22—C23B—H23F109.5
H1N4—N4—H2N4125 (3)H23D—C23B—H23F109.5
C14—C13—C12120.63 (19)H23E—C23B—H23F109.5
C14—C13—H13119.5 (15)
O6—Fe—O2—N1175.55 (12)O3—C8—C9—C10149.8 (2)
O4—Fe—O2—N1−92.72 (12)N3—C8—C9—C10−29.2 (3)
O5—Fe—O2—N196.80 (12)O3—C8—C9—C14−27.4 (3)
O1—Fe—O2—N19.49 (11)N3—C8—C9—C14153.54 (19)
O3—Fe—O2—N1−36.0 (3)C14—C9—C10—C11−1.0 (3)
Fe—O2—N1—C1−11.7 (2)C8—C9—C10—C11−178.25 (19)
O2—N1—C1—O16.1 (3)C9—C10—C11—C12−1.7 (3)
O2—N1—C1—C2−174.36 (16)C10—C11—C12—N4−177.0 (2)
N1—C1—O1—Fe2.5 (2)C10—C11—C12—C132.9 (3)
C2—C1—O1—Fe−176.99 (14)N4—C12—C13—C14178.27 (19)
O2—Fe—O1—C1−6.88 (13)C11—C12—C13—C14−1.6 (3)
O6—Fe—O1—C1−62.3 (2)C12—C13—C14—C9−1.0 (3)
O4—Fe—O1—C183.59 (13)C10—C9—C14—C132.3 (3)
O5—Fe—O1—C1−111.26 (13)C8—C9—C14—C13179.61 (18)
O3—Fe—O1—C1161.76 (13)O2—Fe—O6—N5−100.53 (12)
O1—C1—C2—C320.6 (3)O4—Fe—O6—N5166.72 (12)
N1—C1—C2—C3−158.8 (2)O5—Fe—O6—N53.73 (11)
O1—C1—C2—C7−160.5 (2)O1—Fe—O6—N5−46.5 (3)
N1—C1—C2—C720.0 (3)O3—Fe—O6—N588.00 (12)
C7—C2—C3—C4−1.3 (3)Fe—O6—N5—C15−4.7 (2)
C1—C2—C3—C4177.7 (2)O6—N5—C15—O52.6 (3)
C2—C3—C4—C50.9 (4)O6—N5—C15—C16−175.01 (16)
C3—C4—C5—N2178.1 (2)N5—C15—O5—Fe0.8 (2)
C3—C4—C5—C60.6 (4)C16—C15—O5—Fe178.37 (13)
N2—C5—C6—C7−179.2 (2)O2—Fe—O5—C1585.37 (13)
C4—C5—C6—C7−1.7 (4)O6—Fe—O5—C15−2.56 (12)
C5—C6—C7—C21.3 (4)O4—Fe—O5—C15−64.7 (2)
C3—C2—C7—C60.2 (4)O1—Fe—O5—C15164.44 (12)
C1—C2—C7—C6−178.7 (2)O3—Fe—O5—C15−106.35 (12)
O2—Fe—O4—N3166.76 (12)O5—C15—C16—C1718.8 (3)
O6—Fe—O4—N3−102.43 (12)N5—C15—C16—C17−163.68 (18)
O5—Fe—O4—N3−42.2 (2)O5—C15—C16—C21−157.92 (18)
O1—Fe—O4—N387.02 (12)N5—C15—C16—C2119.6 (3)
O3—Fe—O4—N30.40 (11)C21—C16—C17—C181.2 (3)
Fe—O4—N3—C81.7 (2)C15—C16—C17—C18−175.66 (18)
O4—N3—C8—O3−4.0 (3)C16—C17—C18—C190.4 (3)
O4—N3—C8—C9175.04 (16)C17—C18—C19—N6179.44 (18)
N3—C8—O3—Fe4.1 (2)C17—C18—C19—C20−2.4 (3)
C9—C8—O3—Fe−174.89 (14)N6—C19—C20—C21−178.92 (19)
O2—Fe—O3—C8−60.9 (3)C18—C19—C20—C213.0 (3)
O6—Fe—O3—C886.72 (13)C19—C20—C21—C16−1.4 (3)
O4—Fe—O3—C8−2.41 (12)C17—C16—C21—C20−0.6 (3)
O5—Fe—O3—C8164.62 (13)C15—C16—C21—C20176.07 (18)
O1—Fe—O3—C8−105.33 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H1O7···O6i0.78 (3)1.91 (3)2.694 (2)175 (3)
N6—H1N6···O3ii0.84 (2)2.15 (2)2.968 (2)163.9 (19)
N5—H1N5···O70.84 (2)1.91 (2)2.740 (2)176 (2)
N3—H1N3···O4iii0.86 (3)1.98 (3)2.755 (2)150 (2)
N1—H1N1···O2iv0.84 (3)1.99 (3)2.737 (2)149 (2)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5023).

References

  • Bruker (2003). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Marmion, C. J., Murphy, T., Starikova, Z. & Nolan, K. B. (2000). Acta Cryst. C56, e491–e492.
  • Mulcahy, C., Krot, K. A., Griffith, D. M., Suponitsky, K. Y., Starikova, Z. A. & Marmion, C. J. (2007). Eur. J. Inorg. Chem. pp. 1373–1380.
  • Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.
  • Rio-Echevarria, I. M., White, F. J., Brechin, E. K., Tasker, P. A. & Harris, S. G. (2008). Chem. Commun. pp. 4570–4572. [PubMed]
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography