PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1534.
Published online 2010 June 5. doi:  10.1107/S160053681001980X
PMCID: PMC3006829

(E,E)-3,3′-Dimethyl-1,1′-diphenyl-4,4′-{(ethane-1,2-diyldiimino)­bis­[(2-fur­yl)methyl­idyne]}di-1H-pyrazol-5(4H)-one

Abstract

The complete molecule of the title compound of the title compound, C32H28N6O4, is generated by crystallographic inversion symmetry. The dihedral angles between the pyrazalone ring and the pendant phenyl and furan rings are 15.65 (8) and 65.06 (8)°, respectively. In the crystal, the molecules are linked by N—H(...)O, C—H(...)O and weak C—H(...)π interactions.

Related literature

For general background to pyrazolo­nes, see: Casas et al. (2007 [triangle]); Jensen (1959 [triangle]); Li et al. (2000 [triangle]); Zhang et al. (2007 [triangle], 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1534-scheme1.jpg

Experimental

Crystal data

  • C32H28N6O4
  • M r = 560.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1534-efi3.jpg
  • a = 10.7438 (6) Å
  • b = 7.6999 (4) Å
  • c = 16.8273 (9) Å
  • β = 93.937 (1)°
  • V = 1388.77 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 295 K
  • 0.22 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • 8081 measured reflections
  • 3145 independent reflections
  • 1934 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.133
  • S = 1.02
  • 3145 reflections
  • 195 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001980X/zq2042sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001980X/zq2042Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the College of Chemistry and Mol­ecular Engineering, East China University of Science and Technology.

supplementary crystallographic information

Comment

Pyrazolones form a very important class of heterocycles due to their properties and applications (Casas et al., 2007). Schiffbases derived from 1-phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone (PMFP) have found extensive application in coordination chemistry and in antibacterial activation (Zhang et al., 2007, 2008; Li et al., 2000). In order to expand this field, a novel bis-schiff base has been synthesized and its crystal structure is reported herein for the first time.

The molecular structure of the title compound (I) is shown in Fig.1. The molecule adopts a staggered conformation about the C9—C9i bond (symmetry code: (i) -x, y + 1/2, -z + 1/2) due to the centrosymmetry. Atoms O1, C7, C8 and C11 of the PMFP moiety and N3 of the ethylenediamine group are almost coplanar, the largest deviation being 0.063 (11) Å for atom C11. The phenyl and furan rings are slightly twisted with respect to the central pyrazolone ring making dihedral angles of 15.65 (8)° and 65.06 (8)°, respectively, indicating a high degree of conjugation and electron delocalization.

The cohesion of the crystal is assured by a strong intramolecular hydrogen bond N3—H3A···O1 (Table 1). Three weak hydrogen bonds C2—H2···O1, C3—H3···O1 and C16–16 A···Cg(3) (Cg(3) denotes the C1—C6 ring centroid) also contribute to the stabilization of the crystal structure.

Experimental

All reagents were obtained from commercial sources and used without further purification. PMFP was synthesized according to the method proposed by Jensen (Jensen, 1959). Ethylenediamine1.0 mmol (0.067 ml) was added dropwise to a stirred solution of PMFP 2.0 mmol (0.5365 g) in anhydrous ethanol (25 ml) at ambient temperature.After refluxing for 6 h, the solvent was removed and a pure yellowish product was obtained upon recrystallization from EtOH/n-heptane (V/V = 1) in 78% yield. mp: 181–182°C.

Refinement

The H atom bonded to N3 was located in a difference map and refined freely. Other H atoms were placed in calculated positions, with C—H = 0.93 for phenyl, 0.96 for methyl and 0.97 Å for methylene H atoms, and refined as riding, with Uiso(H) = 1.2Ueq (C) for phenyl and methylene H, and 1.5eqU(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of (I) (thermal ellipsoids are shown at the 30% probability level). Symmetry code: (i) -x, y+1/2, -z+1/2.

Crystal data

C32H28N6O4F(000) = 588
Mr = 560.60Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1740 reflections
a = 10.7438 (6) Åθ = 2.4–22.9°
b = 7.6999 (4) ŵ = 0.09 mm1
c = 16.8273 (9) ÅT = 295 K
β = 93.937 (1)°Block, yellow
V = 1388.77 (13) Å30.22 × 0.20 × 0.20 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer1934 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
graphiteθmax = 27.5°, θmin = 1.9°
phi and ω scansh = −12→13
8081 measured reflectionsk = −10→6
3145 independent reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0585P)2 + 0.2282P] where P = (Fo2 + 2Fc2)/3
3145 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.79340 (17)1.2879 (2)0.11911 (11)0.0503 (4)
C20.86997 (19)1.2531 (3)0.18661 (11)0.0628 (5)
H20.90521.14350.19420.075*
C30.8939 (2)1.3819 (4)0.24275 (14)0.0784 (7)
H30.94481.35840.28840.094*
C40.8430 (2)1.5442 (4)0.23149 (16)0.0832 (8)
H40.86001.63080.26920.100*
C50.7671 (2)1.5788 (3)0.16450 (15)0.0755 (7)
H50.73291.68900.15700.091*
C60.74101 (18)1.4516 (3)0.10811 (13)0.0598 (5)
H60.68871.47530.06310.072*
C70.83098 (17)1.0057 (2)0.04804 (11)0.0494 (4)
C80.76317 (16)0.9266 (2)−0.01917 (10)0.0477 (4)
C90.66731 (17)1.0489 (3)−0.04361 (11)0.0529 (5)
C100.5737 (2)1.0478 (3)−0.11395 (13)0.0757 (7)
H10A0.50980.9640−0.10540.114*
H10B0.61451.0178−0.16100.114*
H10C0.53691.1610−0.12040.114*
C110.79841 (15)0.7652 (2)−0.04839 (10)0.0453 (4)
C120.71716 (18)0.6668 (2)−0.10479 (10)0.0510 (5)
C130.59548 (17)0.6410 (3)−0.10780 (11)0.0566 (5)
H130.54080.6837−0.07200.068*
C140.5636 (2)0.5375 (3)−0.17468 (13)0.0728 (6)
H140.48410.4988−0.19150.087*
C150.6675 (2)0.5054 (3)−0.20900 (13)0.0743 (6)
H150.67330.4402−0.25510.089*
C160.95252 (16)0.5224 (2)−0.03384 (11)0.0498 (5)
H16A0.99080.5153−0.08430.060*
H16B0.88360.4408−0.03500.060*
H3A0.9502 (18)0.768 (3)0.0148 (12)0.072 (6)*
N10.76746 (14)1.1578 (2)0.06110 (8)0.0525 (4)
N20.67014 (15)1.1852 (2)0.00285 (9)0.0586 (4)
N30.90719 (14)0.6974 (2)−0.02175 (10)0.0523 (4)
O10.92691 (12)0.95452 (17)0.08686 (8)0.0615 (4)
O20.76644 (13)0.5832 (2)−0.16638 (8)0.0703 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0526 (10)0.0503 (11)0.0489 (10)−0.0084 (9)0.0096 (8)−0.0029 (9)
C20.0687 (13)0.0644 (13)0.0550 (11)−0.0098 (11)0.0030 (10)−0.0045 (10)
C30.0795 (15)0.0934 (19)0.0622 (14)−0.0174 (14)0.0041 (11)−0.0200 (13)
C40.0753 (15)0.0879 (19)0.0887 (18)−0.0172 (14)0.0219 (14)−0.0418 (15)
C50.0656 (13)0.0618 (14)0.1014 (18)−0.0080 (11)0.0215 (13)−0.0244 (13)
C60.0572 (11)0.0562 (12)0.0673 (12)−0.0035 (10)0.0143 (10)−0.0061 (10)
C70.0528 (10)0.0465 (10)0.0481 (10)0.0005 (9)−0.0017 (8)0.0039 (8)
C80.0505 (10)0.0465 (10)0.0452 (9)0.0000 (8)−0.0029 (8)0.0006 (8)
C90.0550 (11)0.0534 (11)0.0490 (10)0.0044 (9)−0.0051 (8)0.0015 (9)
C100.0822 (15)0.0761 (16)0.0647 (13)0.0176 (13)−0.0249 (11)−0.0040 (12)
C110.0472 (10)0.0460 (10)0.0426 (9)−0.0017 (8)0.0022 (8)0.0051 (8)
C120.0622 (12)0.0480 (10)0.0425 (9)−0.0011 (9)0.0002 (8)−0.0025 (8)
C130.0475 (10)0.0667 (13)0.0559 (11)0.0026 (9)0.0049 (8)−0.0122 (10)
C140.0565 (12)0.0862 (17)0.0741 (14)−0.0062 (12)−0.0086 (11)−0.0161 (12)
C150.0718 (14)0.0852 (16)0.0641 (13)−0.0018 (13)−0.0076 (11)−0.0288 (12)
C160.0482 (10)0.0454 (10)0.0561 (11)−0.0007 (8)0.0052 (8)−0.0022 (8)
N10.0594 (9)0.0474 (9)0.0494 (9)0.0036 (8)−0.0063 (7)−0.0026 (7)
N20.0625 (10)0.0552 (10)0.0564 (9)0.0090 (8)−0.0087 (8)−0.0015 (8)
N30.0497 (9)0.0426 (9)0.0636 (10)−0.0014 (7)−0.0020 (8)−0.0042 (8)
O10.0619 (8)0.0561 (8)0.0635 (8)0.0046 (7)−0.0177 (7)−0.0037 (7)
O20.0630 (9)0.0847 (11)0.0632 (9)0.0002 (8)0.0047 (7)−0.0147 (8)

Geometric parameters (Å, °)

C1—C21.382 (3)C10—H10A0.9600
C1—C61.387 (3)C10—H10B0.9600
C1—N11.413 (2)C10—H10C0.9600
C2—C31.382 (3)C11—N31.330 (2)
C2—H20.9300C11—C121.457 (2)
C3—C41.372 (4)C12—C131.320 (2)
C3—H30.9300C12—O21.358 (2)
C4—C51.371 (4)C13—C141.402 (3)
C4—H40.9300C13—H130.9300
C5—C61.379 (3)C14—C151.315 (3)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—O21.378 (2)
C7—O11.246 (2)C15—H150.9300
C7—N11.380 (2)C16—N31.452 (2)
C7—C81.438 (2)C16—C16i1.516 (3)
C8—C111.398 (3)C16—H16A0.9700
C8—C91.435 (2)C16—H16B0.9700
C9—N21.307 (2)N1—N21.399 (2)
C9—C101.500 (2)N3—H3A0.92 (2)
C2—C1—C6119.95 (18)H10A—C10—H10C109.5
C2—C1—N1120.52 (18)H10B—C10—H10C109.5
C6—C1—N1119.54 (17)N3—C11—C8118.92 (16)
C3—C2—C1119.7 (2)N3—C11—C12119.25 (17)
C3—C2—H2120.2C8—C11—C12121.79 (16)
C1—C2—H2120.2C13—C12—O2109.65 (16)
C4—C3—C2120.4 (2)C13—C12—C11130.61 (17)
C4—C3—H3119.8O2—C12—C11119.74 (16)
C2—C3—H3119.8C12—C13—C14107.65 (18)
C5—C4—C3119.9 (2)C12—C13—H13126.2
C5—C4—H4120.0C14—C13—H13126.2
C3—C4—H4120.0C15—C14—C13106.94 (18)
C4—C5—C6120.6 (2)C15—C14—H14126.5
C4—C5—H5119.7C13—C14—H14126.5
C6—C5—H5119.7C14—C15—O2109.74 (18)
C5—C6—C1119.5 (2)C14—C15—H15125.1
C5—C6—H6120.3O2—C15—H15125.1
C1—C6—H6120.3N3—C16—C16i108.70 (18)
O1—C7—N1125.83 (17)N3—C16—H16A109.9
O1—C7—C8129.37 (17)C16i—C16—H16A109.9
N1—C7—C8104.79 (15)N3—C16—H16B109.9
C11—C8—C9133.55 (16)C16i—C16—H16B109.9
C11—C8—C7121.23 (16)H16A—C16—H16B108.3
C9—C8—C7105.20 (16)C7—N1—N2111.73 (14)
N2—C9—C8111.62 (16)C7—N1—C1129.44 (15)
N2—C9—C10117.60 (17)N2—N1—C1118.64 (15)
C8—C9—C10130.68 (18)C9—N2—N1106.47 (15)
C9—C10—H10A109.5C11—N3—C16127.80 (16)
C9—C10—H10B109.5C11—N3—H3A112.4 (12)
H10A—C10—H10B109.5C16—N3—H3A119.0 (13)
C9—C10—H10C109.5C12—O2—C15106.01 (15)
C6—C1—C2—C3−0.1 (3)C8—C11—C12—O2139.07 (18)
N1—C1—C2—C3−179.80 (18)O2—C12—C13—C14−0.6 (2)
C1—C2—C3—C4−0.6 (3)C11—C12—C13—C14179.5 (2)
C2—C3—C4—C50.6 (4)C12—C13—C14—C150.0 (3)
C3—C4—C5—C60.1 (3)C13—C14—C15—O20.6 (3)
C4—C5—C6—C1−0.7 (3)O1—C7—N1—N2174.61 (17)
C2—C1—C6—C50.7 (3)C8—C7—N1—N2−4.5 (2)
N1—C1—C6—C5−179.56 (17)O1—C7—N1—C1−0.1 (3)
O1—C7—C8—C113.0 (3)C8—C7—N1—C1−179.26 (17)
N1—C7—C8—C11−177.92 (16)C2—C1—N1—C7−19.0 (3)
O1—C7—C8—C9−175.32 (19)C6—C1—N1—C7161.30 (18)
N1—C7—C8—C93.75 (19)C2—C1—N1—N2166.60 (16)
C11—C8—C9—N2−179.9 (2)C6—C1—N1—N2−13.1 (2)
C7—C8—C9—N2−1.9 (2)C8—C9—N2—N1−0.8 (2)
C11—C8—C9—C10−3.7 (4)C10—C9—N2—N1−177.56 (17)
C7—C8—C9—C10174.3 (2)C7—N1—N2—C93.4 (2)
C9—C8—C11—N3167.09 (19)C1—N1—N2—C9178.82 (16)
C7—C8—C11—N3−10.7 (3)C8—C11—N3—C16169.17 (17)
C9—C8—C11—C12−15.3 (3)C12—C11—N3—C16−8.5 (3)
C7—C8—C11—C12166.92 (16)C16i—C16—N3—C11−154.74 (19)
N3—C11—C12—C13136.6 (2)C13—C12—O2—C150.9 (2)
C8—C11—C12—C13−41.0 (3)C11—C12—O2—C15−179.14 (18)
N3—C11—C12—O2−43.3 (2)C14—C15—O2—C12−0.9 (3)

Symmetry codes: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–c6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.92 (2)1.91 (2)2.693 (2)142.0 (17)
C16—H16A···Cg3ii0.972.703.575 (2)151
C3—H3···O1iii0.932.543.389 (2)152

Symmetry codes: (ii) −x, −y, −z+1; (iii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2042).

References

  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin,USA.
  • Casas, J. S., García-Tasende, M. S., Sanchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev.251, 1561–1589.
  • Jensen, B. S. (1959). Acta Chem. Scand 13, 1668–1670.
  • Li, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233–236.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.
  • Zhang, H.-Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. Inorg. Chem.24, 990–993.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography