PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m726–m727.
Published online 2010 June 5. doi:  10.1107/S1600536810019902
PMCID: PMC3006828

Bis[μ-(E)-N′-(4-oxido-4-phenyl­but-3-en-2-yl­idene)benzohydrazidato]bis­[pyridine­copper(II)]

Abstract

In the crystal structure of the title centrosymmetric dimer, [Cu2(C17H14N2O2)2(C5H5N)2], the CuII atom has an almost perfect square-pyramidal geometry. The CuII ion is coordin­ated by the NO2 donor atoms of the hydrazide Schiff base ligand, the N atom of the pyridine group and an O atom of the symmetry-related unit. The dihedral angles between the pyridine ring and the two phenyl rings of the ligand are 21.4 (3) and 24.0 (2)°. The mol­ecular structure is stabilized by intra­molecular C—H(...)O inter­actions.

Related literature

For background to the properties of hydrazide Schiff base–metal complexes, see: Rao et al. (1990 [triangle]); West et al. (1993 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m726-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C17H14N2O2)2(C5H5N)2]
  • M r = 841.88
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m726-efi1.jpg
  • a = 9.2678 (19) Å
  • b = 20.903 (4) Å
  • c = 11.907 (4) Å
  • β = 122.65 (2)°
  • V = 1942.2 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.15 mm−1
  • T = 296 K
  • 0.25 × 0.19 × 0.08 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: multi-scan (MULABS in PLATON; Blessing, 1995 [triangle]; Spek, 2009 [triangle]) T min = 0.791, T max = 1.179
  • 22473 measured reflections
  • 3419 independent reflections
  • 2396 reflections with I > 2σ(I)
  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.091
  • S = 0.98
  • 3419 reflections
  • 248 parameters
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: X-AREA (Stoe & Cie, 2007 [triangle]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019902/su2179sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019902/su2179Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The support of this work by the Shahid Bahonar University of Kerman is acknowledged. RK thanks the Science and Research Branch, Islamic Azad University for support.

supplementary crystallographic information

Comment

Among ligand systems hydrazines and hydrazones occupy a special place because the transition metal complexes of these ligands, developed due to their chelating capacity and structural flexibility, have interesting electrical as well as magnetic properties (Rao et al., 1990), and pharmacological activities, such as antibacterial, antitumoural, antiviral antimalaria, antituberculosis (West et al., 1993).

The molecular structure of the title molecule is illustrated in Fig. I. It is a novel hydrazido-Schiff base copper(II) complex, with the CuII atom having a N2O2 square-pyramidal geometry. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The dihedral angles between the pyridine ring (N3/C18-C22) and the phenyl rings, A (C1-C6) and B (C12-C17), of the ligand are 21.4 (3) and 24.0 (2)°, respectively. The molecular structure is stabilized by intramolecular C—H···O interactions (Fig. 2, Table 1).

In the crystal the molecules are held together by normal van der Waals interactions (Fig. 3).

Experimental

The title compound was synthesized by adding (E)-N'- (4-oxo-4-phenyl butane-2-ylidene) benzohydrazide (1 mmol) to a solution of Cu(OAc)2. H2O (1 mmol) in methanol (30 ml). The mixture was refluxed with stirring for 30 min. It was then placed under a fume hood, near to the a solution of another sample which had pyridine as solvent of crystallization. As a consequence pyridine diffused into the methanol solution and resulted in the formation of brown single crystals of the title complex, over several days.

Refinement

The H-atoms were positioned geometrically and refined using a riding model approximation: C-H = 0.96 Å for H-methyl and 0.93 Å for all other H-atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for H-methyl and = 1.2 for all other H-atoms.

Figures

Fig. 1.
A view of the molecular structure of the title complex, showing 40% probability displacement ellipsoids (H-toms have been omitted for clarity).
Fig. 2.
The asymmetric unit of the title compound. The dashed lines show the intramolecular C-H···O interactions.
Fig. 3.
The crystal packing of the title compound, viewed down the b-axis.

Crystal data

[Cu2(C17H14N2O2)2(C5H5N)2]F(000) = 868
Mr = 841.88Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2500 reflections
a = 9.2678 (19) Åθ = 2.3–27.8°
b = 20.903 (4) ŵ = 1.15 mm1
c = 11.907 (4) ÅT = 296 K
β = 122.65 (2)°Block, brown
V = 1942.2 (8) Å30.25 × 0.19 × 0.08 mm
Z = 2

Data collection

Stoe IPDS II diffractometer3419 independent reflections
Radiation source: fine-focus sealed tube2396 reflections with I > 2σ(I)
graphiteRint = 0.086
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (MULABS in PLATON; Blessing, 1995; Spek, 2009)h = −11→11
Tmin = 0.791, Tmax = 1.179k = −24→23
22473 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0421P)2] where P = (Fo2 + 2Fc2)/3
3419 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.72076 (6)0.989490 (19)0.59789 (4)0.03829 (14)
O10.8469 (3)0.91348 (12)0.6768 (2)0.0487 (6)
O20.5995 (3)1.06734 (11)0.5062 (2)0.0483 (7)
N10.7488 (4)0.98572 (15)0.4481 (3)0.0472 (5)
N20.6903 (4)1.04093 (15)0.3654 (3)0.0472 (5)
N30.7158 (4)1.01066 (15)0.7612 (3)0.0414 (7)
C11.0439 (5)0.8085 (2)0.8269 (4)0.0516 (10)
H1A1.04690.84450.87380.062*
C21.1150 (5)0.7523 (2)0.8941 (4)0.0604 (12)
H2A1.16790.75100.98620.073*
C31.1088 (6)0.6981 (2)0.8270 (5)0.0641 (12)
H3A1.15660.66010.87300.077*
C41.0307 (6)0.7005 (2)0.6901 (5)0.0635 (12)
H4A1.02510.66370.64380.076*
C50.9611 (5)0.75679 (18)0.6218 (4)0.0517 (10)
H5A0.90940.75800.52970.062*
C60.9678 (4)0.81204 (17)0.6902 (4)0.0404 (9)
C70.8931 (5)0.87399 (17)0.6172 (4)0.0435 (9)
C80.8818 (5)0.88587 (18)0.5004 (4)0.0486 (10)
H8A0.92090.85350.46960.058*
C90.8162 (5)0.94287 (19)0.4177 (4)0.0509 (10)
C100.8303 (6)0.9466 (2)0.2981 (4)0.0630 (12)
H10A0.89920.98290.30680.095*
H10B0.71800.95120.21900.095*
H10C0.88260.90820.29210.095*
C110.6189 (4)1.07952 (16)0.4061 (3)0.0377 (8)
C120.5563 (4)1.14232 (16)0.3377 (3)0.0390 (8)
C130.5943 (5)1.16228 (19)0.2453 (4)0.0555 (11)
H13A0.65811.13600.22490.067*
C140.5383 (6)1.2207 (2)0.1837 (5)0.0695 (13)
H14A0.56621.23380.12310.083*
C150.4425 (6)1.2595 (2)0.2104 (5)0.0663 (13)
H15A0.40331.29850.16690.080*
C160.4035 (5)1.2407 (2)0.3021 (5)0.0625 (12)
H16A0.33881.26730.32110.075*
C170.4606 (5)1.18260 (17)0.3654 (4)0.0476 (10)
H17A0.43471.17020.42760.057*
C180.7643 (6)0.96766 (19)0.8587 (4)0.0561 (11)
H18A0.79960.92740.84950.067*
C190.7642 (7)0.9806 (3)0.9721 (4)0.0797 (15)
H19A0.80040.94981.03850.096*
C200.7102 (7)1.0389 (2)0.9855 (5)0.0814 (16)
H20A0.70941.04861.06140.098*
C210.6573 (6)1.0830 (2)0.8863 (4)0.0700 (13)
H21A0.61881.12300.89310.084*
C220.6618 (5)1.06729 (19)0.7760 (4)0.0514 (10)
H22A0.62561.09760.70870.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0494 (3)0.0364 (2)0.0337 (2)−0.0004 (2)0.02546 (19)0.0017 (2)
O10.0575 (17)0.0441 (15)0.0517 (16)0.0063 (13)0.0342 (14)0.0053 (12)
O20.0690 (18)0.0422 (15)0.0389 (15)−0.0001 (13)0.0324 (14)0.0067 (11)
N10.0515 (13)0.0442 (12)0.0462 (13)0.0004 (11)0.0266 (12)0.0062 (10)
N20.0515 (13)0.0442 (12)0.0462 (13)0.0004 (11)0.0266 (12)0.0062 (10)
N30.0501 (17)0.0420 (17)0.0330 (15)−0.0047 (15)0.0231 (14)−0.0017 (15)
C10.049 (2)0.059 (3)0.049 (2)0.010 (2)0.028 (2)0.007 (2)
C20.057 (3)0.079 (3)0.047 (2)0.015 (2)0.029 (2)0.021 (2)
C30.058 (3)0.059 (3)0.072 (3)0.014 (2)0.033 (3)0.029 (3)
C40.064 (3)0.045 (3)0.077 (3)0.009 (2)0.035 (3)0.003 (2)
C50.056 (3)0.049 (3)0.048 (2)0.008 (2)0.027 (2)0.007 (2)
C60.034 (2)0.044 (2)0.044 (2)0.0040 (17)0.0213 (18)0.0074 (17)
C70.038 (2)0.041 (2)0.052 (2)−0.0006 (17)0.0237 (19)−0.0020 (18)
C80.059 (3)0.039 (2)0.047 (2)0.0087 (19)0.028 (2)0.0037 (18)
C90.056 (3)0.061 (3)0.047 (2)−0.007 (2)0.036 (2)−0.008 (2)
C100.087 (3)0.064 (3)0.058 (3)0.016 (2)0.053 (3)0.012 (2)
C110.038 (2)0.035 (2)0.0330 (19)−0.0079 (16)0.0148 (17)−0.0002 (15)
C120.040 (2)0.036 (2)0.0319 (19)−0.0064 (16)0.0139 (17)0.0040 (16)
C130.068 (3)0.054 (3)0.054 (3)0.005 (2)0.039 (2)0.014 (2)
C140.081 (3)0.066 (3)0.068 (3)0.001 (3)0.044 (3)0.031 (2)
C150.056 (3)0.047 (3)0.074 (3)0.001 (2)0.020 (3)0.022 (2)
C160.054 (3)0.045 (3)0.087 (3)0.004 (2)0.036 (3)0.002 (2)
C170.051 (2)0.043 (2)0.051 (2)−0.0061 (19)0.029 (2)0.0037 (18)
C180.080 (3)0.049 (2)0.045 (2)0.004 (2)0.038 (2)0.0058 (18)
C190.126 (4)0.078 (3)0.051 (3)0.012 (3)0.058 (3)0.013 (3)
C200.127 (5)0.082 (3)0.052 (3)0.007 (3)0.059 (3)−0.002 (3)
C210.102 (4)0.058 (3)0.058 (3)0.006 (3)0.048 (3)−0.009 (2)
C220.072 (3)0.041 (2)0.046 (2)−0.003 (2)0.034 (2)−0.0011 (18)

Geometric parameters (Å, °)

Cu1—O11.894 (2)C9—C101.500 (5)
Cu1—N11.938 (3)C10—H10A0.9600
Cu1—O21.944 (2)C10—H10B0.9600
Cu1—N32.018 (3)C10—H10C0.9600
O1—C71.301 (4)C11—C121.488 (5)
O2—C111.323 (4)C12—C171.385 (5)
N1—C91.252 (5)C12—C131.389 (5)
N1—N21.421 (4)C13—C141.373 (6)
N2—C111.292 (4)C13—H13A0.9300
N3—C221.333 (5)C14—C151.361 (6)
N3—C181.340 (4)C14—H14A0.9300
C1—C21.372 (5)C15—C161.379 (6)
C1—C61.383 (5)C15—H15A0.9300
C1—H1A0.9300C16—C171.376 (5)
C2—C31.370 (6)C16—H16A0.9300
C2—H2A0.9300C17—H17A0.9300
C3—C41.381 (6)C18—C191.377 (6)
C3—H3A0.9300C18—H18A0.9300
C4—C51.378 (5)C19—C201.359 (6)
C4—H4A0.9300C19—H19A0.9300
C5—C61.395 (5)C20—C211.365 (6)
C5—H5A0.9300C20—H20A0.9300
C6—C71.504 (5)C21—C221.376 (5)
C7—C81.361 (5)C21—H21A0.9300
C8—C91.453 (5)C22—H22A0.9300
C8—H8A0.9300
O1—Cu1—N193.94 (12)C9—C10—H10A109.5
O1—Cu1—O2174.68 (10)C9—C10—H10B109.5
N1—Cu1—O280.87 (12)H10A—C10—H10B109.5
O1—Cu1—N392.01 (12)C9—C10—H10C109.5
N1—Cu1—N3168.38 (13)H10A—C10—H10C109.5
O2—Cu1—N392.90 (11)H10B—C10—H10C109.5
C7—O1—Cu1123.9 (2)N2—C11—O2124.3 (3)
C11—O2—Cu1110.4 (2)N2—C11—C12118.2 (3)
C9—N1—N2116.4 (3)O2—C11—C12117.4 (3)
C9—N1—Cu1129.1 (3)C17—C12—C13118.3 (3)
N2—N1—Cu1114.5 (2)C17—C12—C11121.1 (3)
C11—N2—N1109.2 (3)C13—C12—C11120.6 (3)
C22—N3—C18117.1 (3)C14—C13—C12120.4 (4)
C22—N3—Cu1121.8 (2)C14—C13—H13A119.8
C18—N3—Cu1121.1 (3)C12—C13—H13A119.8
C2—C1—C6120.8 (4)C15—C14—C13120.8 (4)
C2—C1—H1A119.6C15—C14—H14A119.6
C6—C1—H1A119.6C13—C14—H14A119.6
C3—C2—C1120.8 (4)C14—C15—C16119.9 (4)
C3—C2—H2A119.6C14—C15—H15A120.1
C1—C2—H2A119.6C16—C15—H15A120.1
C2—C3—C4119.3 (4)C17—C16—C15119.8 (4)
C2—C3—H3A120.4C17—C16—H16A120.1
C4—C3—H3A120.4C15—C16—H16A120.1
C5—C4—C3120.5 (4)C16—C17—C12120.9 (4)
C5—C4—H4A119.7C16—C17—H17A119.6
C3—C4—H4A119.7C12—C17—H17A119.6
C4—C5—C6120.2 (4)N3—C18—C19122.7 (4)
C4—C5—H5A119.9N3—C18—H18A118.6
C6—C5—H5A119.9C19—C18—H18A118.6
C1—C6—C5118.4 (3)C20—C19—C18119.1 (4)
C1—C6—C7120.6 (3)C20—C19—H19A120.4
C5—C6—C7120.9 (3)C18—C19—H19A120.4
O1—C7—C8125.1 (3)C19—C20—C21119.1 (4)
O1—C7—C6114.6 (3)C19—C20—H20A120.4
C8—C7—C6120.3 (3)C21—C20—H20A120.4
C7—C8—C9128.0 (3)C20—C21—C22118.9 (4)
C7—C8—H8A116.0C20—C21—H21A120.5
C9—C8—H8A116.0C22—C21—H21A120.5
N1—C9—C8118.9 (3)N3—C22—C21123.0 (4)
N1—C9—C10123.3 (4)N3—C22—H22A118.5
C8—C9—C10117.8 (3)C21—C22—H22A118.5
N1—Cu1—O1—C7−11.1 (3)O1—C7—C8—C9−0.8 (7)
N3—Cu1—O1—C7178.8 (3)C6—C7—C8—C9−179.0 (4)
N1—Cu1—O2—C11−7.6 (2)N2—N1—C9—C8178.7 (3)
N3—Cu1—O2—C11162.6 (2)Cu1—N1—C9—C81.6 (6)
O1—Cu1—N1—C95.3 (4)N2—N1—C9—C10−2.4 (6)
O2—Cu1—N1—C9−175.9 (4)Cu1—N1—C9—C10−179.5 (3)
N3—Cu1—N1—C9125.9 (6)C7—C8—C9—N1−5.9 (7)
O1—Cu1—N1—N2−171.9 (2)C7—C8—C9—C10175.2 (4)
O2—Cu1—N1—N26.9 (2)N1—N2—C11—O2−2.3 (5)
N3—Cu1—N1—N2−51.3 (7)N1—N2—C11—C12176.8 (3)
C9—N1—N2—C11177.7 (3)Cu1—O2—C11—N28.0 (4)
Cu1—N1—N2—C11−4.7 (4)Cu1—O2—C11—C12−171.2 (2)
O1—Cu1—N3—C22169.8 (3)N2—C11—C12—C17172.2 (3)
N1—Cu1—N3—C2249.0 (8)O2—C11—C12—C17−8.7 (5)
O2—Cu1—N3—C22−8.2 (3)N2—C11—C12—C13−8.5 (5)
O1—Cu1—N3—C18−11.3 (3)O2—C11—C12—C13170.6 (3)
N1—Cu1—N3—C18−132.1 (6)C17—C12—C13—C140.2 (6)
O2—Cu1—N3—C18170.7 (3)C11—C12—C13—C14−179.1 (4)
C6—C1—C2—C3−1.5 (6)C12—C13—C14—C15−1.1 (7)
C1—C2—C3—C40.4 (7)C13—C14—C15—C161.2 (7)
C2—C3—C4—C50.6 (7)C14—C15—C16—C17−0.5 (7)
C3—C4—C5—C6−0.4 (6)C15—C16—C17—C12−0.4 (6)
C2—C1—C6—C51.7 (6)C13—C12—C17—C160.5 (6)
C2—C1—C6—C7−178.8 (4)C11—C12—C17—C16179.8 (3)
C4—C5—C6—C1−0.7 (6)C22—N3—C18—C19−1.7 (6)
C4—C5—C6—C7179.8 (4)Cu1—N3—C18—C19179.4 (4)
Cu1—O1—C7—C810.8 (5)N3—C18—C19—C201.0 (8)
Cu1—O1—C7—C6−170.9 (2)C18—C19—C20—C210.2 (8)
C1—C6—C7—O1−24.9 (5)C19—C20—C21—C22−0.7 (8)
C5—C6—C7—O1154.6 (3)C18—N3—C22—C211.1 (6)
C1—C6—C7—C8153.5 (4)Cu1—N3—C22—C21−179.9 (3)
C5—C6—C7—C8−27.0 (5)C20—C21—C22—N30.0 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C18—H18A···O10.932.342.892 (6)117
C22—H22A···O20.932.372.940 (5)119

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2179).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Rao, S., Mishra, D. D., Mourya, R. V. & Nageswara, N. (1990). Polyhedron, 16, 1825–1829.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2007). X-AREA and X-RED Stoe & Cie GmbH, Darmstadt, Germany.
  • West, D. X., Liberta, A. E., Padhye, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. & Yarande, R. G. (1993). Coord. Chem. Rev.123 49–72.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography