PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1881.
Published online 2010 June 30. doi:  10.1107/S1600536810025341
PMCID: PMC3006824

N′-[(E)-(1-Methyl-1H-pyrrol-2-yl)methyl­idene]pyridine-4-carbohydrazide

Abstract

In the title compound, C12H12N4O, the pyridine and pyrrole rings are inclined at an angle of 29.22 (8)° and an intra­molecular C—H(...)N inter­action geneates an S(6) ring. In the crystal, mol­ecules are linked by N—H(...)N hydrogen bonds, forming (010) C(7) chains. The chains are cross-linked by weak C—H(...)O inter­actions, which generate R 2 2(18) ring motifs within an infinite sheet. Finally, two C—H(...)π inter­actions are present, where the C—H groups are from the pyridine ring and π is the pyrrole ring.

Related literature

For background information on Schiff bases containing heterocyclic rings and for related structures, see: Shafiq et al.,(2009a [triangle],b [triangle]); Hussain et al. (2010 [triangle]) For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1881-scheme1.jpg

Experimental

Crystal data

  • C12H12N4O
  • M r = 228.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1881-efi2.jpg
  • a = 8.2134 (3) Å
  • b = 10.6740 (4) Å
  • c = 13.1332 (4) Å
  • β = 96.938 (2)°
  • V = 1142.95 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.24 × 0.18 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.980, T max = 0.985
  • 12030 measured reflections
  • 2803 independent reflections
  • 2023 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.127
  • S = 1.04
  • 2803 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025341/hb5530sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025341/hb5530Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

We have reported crystal structures of Schiff bases with N-containing aromatic ring (Shafiq et al., 2009a, 2009b), (Hussain et al., 2010) and as a part of this project, we report herein the structure and synthesis of the title compound (I, Fig. 1).

In (I) the pyridine ring A (C1–C5/N1), the central moiety B (O1/C6/N2/N3/C7) and the pyrrol moiety C (C8—C11/N4/C12) are planar with r. m. s. deviations of 0.0345, 0.0285 and 0.0276 Å, respectively. The dihedral angle between A/B, A/C and B/C is 38.32 (8)°, 29.22 (8)° and 9.44 (13)°, respectively. In title molecule, there exist intra as well inter-molecular H-bondings (Table 1). The molecules form infinite one dimensional polymeric chains extending along the b axis (Fig. 2), if only strong H-bondings are considered. If the strong as well as weak H-bondings are considered then the molecules form two-dimensional polymeric chains with R22(18) (Bernstein et al., 1995) ring motifs (Fig. 3). The C—H···π interactions (Table 1) also play important role in stabilizing the molecules.

Experimental

To a hot stirred solution of isoniazid (1.37 g, 0.01 mole) in ethanol 15 ml was added N-methylpyrrol-2-carboxaldehyde (1.1 ml, 0.01 mol). The resultant mixture was then heated under reflux. The reaction was monitored through TLC. After an hour, the precipitate were formed. The reaction mixture was further heated for 30 min. The resultant crude material was recrystalized in 1,4-dioxane:ethanol (1:4) to affoard red prisms of (I).

Refinement

The H-atoms were positioned geometrically (N–H = 0.86 Å, `C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
Fig. 2.
The partial packing of (I), which shows that molecules form infinite one dimensional polymeric chains extending along b axis.
Fig. 3.
The partial packing (PLATON; Spek, 2009) which shows that molecules form R22(18) ring motifs in the infinite polymeric chains.

Crystal data

C12H12N4OF(000) = 480
Mr = 228.26Dx = 1.326 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1770 reflections
a = 8.2134 (3) Åθ = 2.6–28.4°
b = 10.6740 (4) ŵ = 0.09 mm1
c = 13.1332 (4) ÅT = 296 K
β = 96.938 (2)°Prism, red
V = 1142.95 (7) Å30.24 × 0.18 × 0.15 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2803 independent reflections
Radiation source: fine-focus sealed tube2023 reflections with I > 2σ(I)
graphiteRint = 0.029
Detector resolution: 7.50 pixels mm-1θmax = 28.3°, θmin = 2.5°
ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −14→14
Tmin = 0.980, Tmax = 0.985l = −17→17
12030 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0618P)2 + 0.235P] where P = (Fo2 + 2Fc2)/3
2803 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.68517 (16)0.25900 (11)0.46989 (10)0.0596 (4)
N10.25031 (16)0.01556 (12)0.25463 (10)0.0424 (4)
N20.55170 (15)0.41010 (11)0.37015 (10)0.0388 (4)
N30.65784 (16)0.50489 (12)0.40795 (10)0.0417 (4)
N40.85194 (16)0.74061 (12)0.46127 (10)0.0411 (4)
C10.46019 (16)0.19827 (12)0.34909 (10)0.0315 (4)
C20.40449 (19)0.10059 (13)0.40461 (11)0.0374 (4)
C30.30152 (19)0.01259 (14)0.35500 (12)0.0414 (5)
C40.3056 (2)0.11012 (14)0.20128 (11)0.0421 (5)
C50.40918 (19)0.20229 (14)0.24441 (11)0.0378 (4)
C60.57736 (18)0.29160 (14)0.40312 (11)0.0371 (4)
C70.62947 (19)0.61063 (14)0.36395 (12)0.0416 (5)
C80.72195 (19)0.72388 (14)0.38651 (12)0.0404 (5)
C90.6991 (2)0.83500 (15)0.33312 (13)0.0497 (5)
C100.8163 (2)0.92006 (16)0.37628 (13)0.0539 (6)
C110.9081 (2)0.85957 (15)0.45424 (13)0.0496 (6)
C120.9127 (2)0.65484 (17)0.54194 (14)0.0574 (6)
H20.469240.427170.325510.0466*
H2A0.436350.094450.474820.0449*
H30.26551−0.052680.393520.0497*
H40.272130.113750.131120.0505*
H50.444380.266140.204120.0454*
H70.541040.614880.312680.0500*
H90.619370.850440.278010.0597*
H100.829241.002460.355690.0646*
H110.995750.894290.496280.0595*
H12A0.861080.672340.602170.0860*
H12B1.029280.664690.557370.0860*
H12C0.888280.570430.519950.0860*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0566 (8)0.0471 (7)0.0666 (8)−0.0071 (6)−0.0275 (6)0.0054 (6)
N10.0438 (8)0.0334 (7)0.0475 (7)−0.0070 (6)−0.0048 (5)−0.0019 (5)
N20.0359 (7)0.0296 (6)0.0480 (7)−0.0057 (5)−0.0070 (5)−0.0040 (5)
N30.0389 (7)0.0336 (7)0.0511 (7)−0.0081 (5)−0.0010 (5)−0.0087 (5)
N40.0427 (7)0.0335 (7)0.0474 (7)−0.0083 (5)0.0062 (6)−0.0074 (5)
C10.0297 (7)0.0266 (7)0.0374 (7)0.0006 (5)0.0003 (5)−0.0018 (5)
C20.0437 (8)0.0331 (8)0.0340 (7)−0.0001 (6)−0.0012 (6)0.0025 (6)
C30.0458 (9)0.0331 (8)0.0449 (8)−0.0071 (7)0.0035 (6)0.0052 (6)
C40.0509 (9)0.0385 (8)0.0341 (7)−0.0045 (7)−0.0061 (6)−0.0011 (6)
C50.0453 (9)0.0318 (7)0.0359 (7)−0.0047 (6)0.0030 (6)0.0032 (6)
C60.0348 (8)0.0343 (8)0.0406 (7)−0.0037 (6)−0.0022 (6)−0.0022 (6)
C70.0380 (8)0.0344 (8)0.0509 (9)−0.0047 (7)−0.0012 (7)−0.0074 (7)
C80.0396 (8)0.0351 (8)0.0470 (8)−0.0051 (6)0.0069 (7)−0.0087 (6)
C90.0580 (10)0.0381 (9)0.0529 (9)−0.0047 (8)0.0064 (8)−0.0029 (7)
C100.0729 (12)0.0331 (8)0.0580 (10)−0.0118 (8)0.0178 (9)−0.0040 (7)
C110.0560 (10)0.0380 (9)0.0570 (10)−0.0198 (8)0.0162 (8)−0.0155 (8)
C120.0538 (11)0.0461 (10)0.0680 (11)−0.0058 (8)−0.0098 (8)0.0025 (9)

Geometric parameters (Å, °)

O1—C61.219 (2)C7—C81.439 (2)
N1—C31.335 (2)C8—C91.379 (2)
N1—C41.339 (2)C9—C101.393 (2)
N2—N31.3877 (18)C10—C111.359 (2)
N2—C61.3453 (19)C2—H2A0.9300
N3—C71.277 (2)C3—H30.9300
N4—C81.372 (2)C4—H40.9300
N4—C111.358 (2)C5—H50.9300
N4—C121.443 (2)C7—H70.9300
N2—H20.8600C9—H90.9300
C1—C21.3815 (19)C10—H100.9300
C1—C51.3886 (19)C11—H110.9300
C1—C61.502 (2)C12—H12A0.9600
C2—C31.374 (2)C12—H12B0.9600
C4—C51.377 (2)C12—H12C0.9600
C3—N1—C4116.64 (13)N4—C11—C10109.47 (15)
N3—N2—C6120.21 (12)C1—C2—H2A120.00
N2—N3—C7114.22 (13)C3—C2—H2A120.00
C8—N4—C11108.33 (13)N1—C3—H3118.00
C8—N4—C12127.81 (13)C2—C3—H3118.00
C11—N4—C12123.58 (14)N1—C4—H4118.00
C6—N2—H2120.00C5—C4—H4118.00
N3—N2—H2120.00C1—C5—H5121.00
C2—C1—C6119.03 (12)C4—C5—H5121.00
C2—C1—C5117.80 (13)N3—C7—H7117.00
C5—C1—C6123.13 (12)C8—C7—H7117.00
C1—C2—C3119.32 (13)C8—C9—H9126.00
N1—C3—C2123.67 (14)C10—C9—H9126.00
N1—C4—C5123.72 (14)C9—C10—H10127.00
C1—C5—C4118.86 (13)C11—C10—H10127.00
N2—C6—C1113.89 (12)N4—C11—H11125.00
O1—C6—N2124.87 (14)C10—C11—H11125.00
O1—C6—C1121.24 (13)N4—C12—H12A109.00
N3—C7—C8125.91 (15)N4—C12—H12B109.00
N4—C8—C9107.35 (13)N4—C12—H12C109.00
C7—C8—C9125.57 (15)H12A—C12—H12B109.00
N4—C8—C7127.04 (14)H12A—C12—H12C109.00
C8—C9—C10107.99 (15)H12B—C12—H12C109.00
C9—C10—C11106.87 (15)
C4—N1—C3—C20.6 (2)C2—C1—C5—C40.4 (2)
C3—N1—C4—C5−0.5 (2)C6—C1—C5—C4177.90 (14)
C6—N2—N3—C7173.81 (14)C2—C1—C6—O138.1 (2)
N3—N2—C6—O14.1 (2)C2—C1—C6—N2−142.47 (14)
N3—N2—C6—C1−175.38 (12)C5—C1—C6—O1−139.38 (16)
N2—N3—C7—C8−178.82 (14)C5—C1—C6—N240.08 (19)
C11—N4—C8—C7177.64 (15)C1—C2—C3—N1−0.2 (2)
C11—N4—C8—C90.04 (17)N1—C4—C5—C10.0 (2)
C12—N4—C8—C7−8.4 (3)N3—C7—C8—N4−2.9 (3)
C12—N4—C8—C9174.00 (15)N3—C7—C8—C9174.33 (16)
C8—N4—C11—C100.12 (19)N4—C8—C9—C10−0.18 (18)
C12—N4—C11—C10−174.15 (15)C7—C8—C9—C10−177.82 (15)
C5—C1—C2—C3−0.3 (2)C8—C9—C10—C110.25 (19)
C6—C1—C2—C3−177.89 (14)C9—C10—C11—N4−0.23 (19)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8—C11/N4 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.862.193.0205 (18)163
C4—H4···O1ii0.932.543.3821 (19)150
C12—H12B···O1iii0.962.553.450 (2)156
C12—H12C···N30.962.363.025 (2)126
C2—H2A···Cg1iv0.932.833.3258 (16)114
C5—H5···Cg1v0.932.713.4669 (17)139

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5530).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta. Cryst. E66, o1880. [PMC free article] [PubMed]
  • Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2496. [PMC free article] [PubMed]
  • Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2899. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography