PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1794.
Published online 2010 June 26. doi:  10.1107/S1600536810021537
PMCID: PMC3006818

4-Methyl­anilinium p-toluene­sulfonate

Abstract

The crystal structure of the title compound, C7H10N+·C7H7O3S, displays strong N—H(...)O and N—H(...)S hydrogen bonding between the ammonium group and the p-toluene­sulfonate anion, linking the cations and anions into chains along the b axis.

Related literature

For background to dielectric–ferroelectric materials, see: Hang et al. (2009 [triangle]); Li et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1794-scheme1.jpg

Experimental

Crystal data

  • C7H10N+·C7H7O3S
  • M r = 279.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1794-efi1.jpg
  • a = 5.775 (4) Å
  • b = 9.026 (5) Å
  • c = 13.350 (8) Å
  • β = 96.344 (9)°
  • V = 691.6 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 293 K
  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.929, T max = 1.000
  • 6641 measured reflections
  • 3136 independent reflections
  • 2876 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.093
  • S = 0.99
  • 3136 reflections
  • 174 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.23 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1448 Friedel pairs
  • Flack parameter: 0.05 (8)

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021537/fj2307sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021537/fj2307Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Southeast University for financial support of this research and is grateful for the guidance of Professor Wen Zhang.

supplementary crystallographic information

Comment

Dielectric-ferroelectric as an interesting class of materials, there are organic ligands (Li et al., 2008), metal-organic coordination compounds (Hang et al., 2009) and organic-inorganic hybrid. In this article, the preparation and crystal structure of the title compound have been presented. It should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (477 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed.

The asymmetric unit of the title compound contains a (CH3—C6H4—NH3+) cation and an (CH3—C6H4—SO3-) anion (Fig.1). The strong N—H···S, N—H···O hydrogen bonds involving H1D and H1E (N1···S1 3.570 (3) Å and N1···O1 2.829 (3) Å) are beneficial to the stability of the crystal structure and link the cations and anions to chains along the b axis (Fig. 2 and Tab. 1).

Experimental

The title compound was obtained by the addition of p-toluenesulfonic acid (3.78 g, 0.022 mol) to a solution of 4-methylaniline (2.14 g, 0.02 mol) in ethanol, in the stoichiometric ratio 1.1:1. After two weeks, good quality single crystals were obtained by slow evaporation.

Refinement

Positional parameters of all the H atoms were calculated geometrically and the H atoms were set to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

Crystal data

C7H10N+·C7H7O3SF(000) = 296
Mr = 279.35Dx = 1.341 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3136 reflections
a = 5.775 (4) Åθ = 3.6–27.5°
b = 9.026 (5) ŵ = 0.24 mm1
c = 13.350 (8) ÅT = 293 K
β = 96.344 (9)°Prism, colorless
V = 691.6 (7) Å30.2 × 0.2 × 0.2 mm
Z = 2

Data collection

Rigaku Mercury2 diffractometer3136 independent reflections
Radiation source: fine-focus sealed tube2876 reflections with I > 2σ(I)
graphiteRint = 0.029
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.6°
CCD_Profile_fitting scansh = −7→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −11→11
Tmin = 0.929, Tmax = 1.000l = −17→17
6641 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.093w = 1/[σ2(Fo2) + (0.0447P)2 + 0.128P] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3136 reflectionsΔρmax = 0.18 e Å3
174 parametersΔρmin = −0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1448 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.05 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.14320 (9)−0.16236 (6)0.34803 (4)0.03362 (14)
O10.0753 (3)−0.0673 (2)0.42886 (12)0.0456 (4)
O20.0234 (3)−0.30349 (19)0.34704 (14)0.0481 (4)
O30.3936 (2)−0.1756 (2)0.34883 (12)0.0485 (4)
C80.0436 (3)−0.0720 (2)0.23353 (15)0.0302 (4)
C90.1872 (4)0.0278 (3)0.19156 (17)0.0363 (5)
H9A0.33720.04500.22230.044*
C100.1071 (4)0.1023 (3)0.10348 (19)0.0420 (6)
H10A0.20380.17010.07610.050*
C11−0.1161 (4)0.0769 (3)0.05557 (17)0.0394 (5)
C12−0.2047 (5)0.1588 (4)−0.0397 (2)0.0589 (8)
H12A−0.37180.1546−0.04910.071*
H12B−0.14340.1134−0.09620.071*
H12C−0.15530.2603−0.03430.071*
C13−0.2562 (4)−0.0238 (3)0.09898 (18)0.0405 (6)
H13A−0.4056−0.04200.06790.049*
C14−0.1806 (4)−0.0981 (3)0.18702 (18)0.0368 (5)
H14A−0.2783−0.16470.21490.044*
N1−0.7130 (4)−0.8010 (3)0.50369 (16)0.0513 (5)
H1D−0.8346−0.74370.51250.062*
H1E−0.7621−0.89250.48850.062*
H1F−0.6154−0.80260.56020.062*
C1−0.2340 (5)−0.5599 (4)0.1861 (2)0.0590 (7)
H1A−0.2324−0.45380.19110.071*
H1B−0.3120−0.58890.12180.071*
H1C−0.0768−0.59630.19260.071*
C2−0.3611 (4)−0.6242 (2)0.26934 (18)0.0408 (6)
C3−0.2853 (4)−0.7531 (3)0.31786 (18)0.0400 (5)
H3A−0.1548−0.80100.29850.048*
C4−0.3986 (4)−0.8132 (3)0.39495 (18)0.0392 (5)
H4A−0.3448−0.89960.42750.047*
C5−0.5937 (4)−0.7409 (3)0.42196 (17)0.0385 (5)
C6−0.6736 (4)−0.6122 (3)0.3749 (2)0.0485 (7)
H6A−0.8047−0.56450.39390.058*
C7−0.5565 (5)−0.5552 (3)0.2994 (2)0.0508 (6)
H7A−0.6097−0.46800.26770.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0322 (2)0.0360 (3)0.0334 (3)0.0060 (3)0.00711 (18)0.0046 (2)
O10.0537 (10)0.0513 (11)0.0326 (9)0.0096 (9)0.0085 (7)−0.0025 (8)
O20.0532 (11)0.0334 (9)0.0589 (11)0.0011 (8)0.0121 (8)0.0090 (8)
O30.0311 (7)0.0656 (11)0.0489 (9)0.0115 (9)0.0046 (6)0.0178 (9)
C80.0276 (10)0.0320 (11)0.0315 (10)0.0028 (9)0.0058 (8)−0.0017 (9)
C90.0309 (11)0.0432 (13)0.0349 (12)−0.0018 (10)0.0044 (9)0.0023 (10)
C100.0416 (13)0.0448 (14)0.0409 (13)−0.0050 (11)0.0101 (10)0.0068 (11)
C110.0438 (12)0.0443 (13)0.0303 (11)0.0072 (11)0.0042 (10)0.0023 (10)
C120.0641 (18)0.074 (2)0.0371 (14)0.0073 (16)0.0010 (12)0.0134 (14)
C130.0295 (11)0.0532 (15)0.0380 (12)0.0016 (11)−0.0004 (9)−0.0003 (11)
C140.0305 (11)0.0392 (12)0.0415 (13)−0.0011 (10)0.0071 (9)0.0019 (10)
N10.0401 (11)0.0737 (14)0.0412 (11)−0.0133 (11)0.0088 (9)−0.0154 (11)
C10.0736 (19)0.0558 (17)0.0486 (16)−0.0024 (16)0.0105 (14)0.0017 (14)
C20.0469 (13)0.0390 (14)0.0362 (12)−0.0028 (10)0.0027 (10)−0.0083 (9)
C30.0349 (12)0.0416 (14)0.0444 (13)0.0025 (10)0.0085 (10)−0.0099 (11)
C40.0392 (12)0.0377 (12)0.0402 (12)0.0013 (10)0.0026 (9)−0.0019 (10)
C50.0310 (11)0.0513 (14)0.0333 (11)−0.0057 (10)0.0047 (9)−0.0119 (11)
C60.0385 (13)0.0572 (16)0.0494 (15)0.0153 (11)0.0032 (11)−0.0145 (12)
C70.0583 (16)0.0456 (15)0.0474 (14)0.0186 (13)0.0012 (12)−0.0013 (12)

Geometric parameters (Å, °)

S1—O21.449 (2)N1—C51.458 (3)
S1—O31.4500 (18)N1—H1D0.8903
S1—O11.4655 (18)N1—H1E0.8893
S1—C81.772 (2)N1—H1F0.8904
C8—C91.384 (3)C1—C21.514 (4)
C8—C141.393 (3)C1—H1A0.9600
C9—C101.389 (3)C1—H1B0.9600
C9—H9A0.9300C1—H1C0.9600
C10—C111.393 (4)C2—C31.379 (3)
C10—H10A0.9300C2—C71.387 (4)
C11—C131.386 (3)C3—C41.389 (3)
C11—C121.510 (3)C3—H3A0.9300
C12—H12A0.9600C4—C51.384 (3)
C12—H12B0.9600C4—H4A0.9300
C12—H12C0.9600C5—C61.376 (4)
C13—C141.381 (3)C6—C71.374 (4)
C13—H13A0.9300C6—H6A0.9300
C14—H14A0.9300C7—H7A0.9300
O2—S1—O3113.73 (12)C5—N1—H1D109.1
O2—S1—O1110.78 (11)C5—N1—H1E109.9
O3—S1—O1113.02 (11)H1D—N1—H1E109.5
O2—S1—C8106.72 (11)C5—N1—H1F109.4
O3—S1—C8105.82 (10)H1D—N1—H1F109.4
O1—S1—C8106.15 (11)H1E—N1—H1F109.5
C9—C8—C14119.9 (2)C2—C1—H1A109.5
C9—C8—S1119.82 (16)C2—C1—H1B109.5
C14—C8—S1120.26 (17)H1A—C1—H1B109.5
C8—C9—C10120.0 (2)C2—C1—H1C109.5
C8—C9—H9A120.0H1A—C1—H1C109.5
C10—C9—H9A120.0H1B—C1—H1C109.5
C9—C10—C11120.9 (2)C3—C2—C7118.0 (2)
C9—C10—H10A119.5C3—C2—C1120.9 (2)
C11—C10—H10A119.5C7—C2—C1121.1 (2)
C13—C11—C10118.0 (2)C2—C3—C4121.8 (2)
C13—C11—C12120.9 (2)C2—C3—H3A119.1
C10—C11—C12121.1 (2)C4—C3—H3A119.1
C11—C12—H12A109.5C5—C4—C3118.2 (2)
C11—C12—H12B109.5C5—C4—H4A120.9
H12A—C12—H12B109.5C3—C4—H4A120.9
C11—C12—H12C109.5C6—C5—C4121.4 (2)
H12A—C12—H12C109.5C6—C5—N1119.6 (2)
H12B—C12—H12C109.5C4—C5—N1119.0 (2)
C14—C13—C11122.0 (2)C7—C6—C5118.9 (2)
C14—C13—H13A119.0C7—C6—H6A120.5
C11—C13—H13A119.0C5—C6—H6A120.5
C13—C14—C8119.2 (2)C6—C7—C2121.8 (2)
C13—C14—H14A120.4C6—C7—H7A119.1
C8—C14—H14A120.4C2—C7—H7A119.1
O2—S1—C8—C9−151.80 (18)C11—C13—C14—C8−0.4 (4)
O3—S1—C8—C9−30.3 (2)C9—C8—C14—C130.3 (3)
O1—S1—C8—C990.00 (19)S1—C8—C14—C13178.57 (18)
O2—S1—C8—C1429.9 (2)C7—C2—C3—C4−0.2 (3)
O3—S1—C8—C14151.35 (19)C1—C2—C3—C4179.5 (2)
O1—S1—C8—C14−88.3 (2)C2—C3—C4—C50.6 (3)
C14—C8—C9—C100.3 (3)C3—C4—C5—C6−0.6 (3)
S1—C8—C9—C10−178.00 (19)C3—C4—C5—N1−179.1 (2)
C8—C9—C10—C11−0.7 (4)C4—C5—C6—C70.2 (4)
C9—C10—C11—C130.6 (4)N1—C5—C6—C7178.6 (2)
C9—C10—C11—C12179.4 (2)C5—C6—C7—C20.3 (4)
C10—C11—C13—C140.0 (4)C3—C2—C7—C6−0.2 (4)
C12—C11—C13—C14−178.8 (2)C1—C2—C7—C6−179.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1D···O1i0.892.313.170 (3)164
N1—H1D···O2i0.892.332.824 (3)115
N1—H1D···S1i0.892.813.570 (3)144
N1—H1E···O1ii0.891.962.829 (3)165
N1—H1F···O3iii0.892.022.785 (3)143

Symmetry codes: (i) −x−1, y−1/2, −z+1; (ii) x−1, y−1, z; (iii) −x, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2307).

References

  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des.5, 2026–2029.
  • Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography