PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1647.
Published online 2010 June 16. doi:  10.1107/S1600536810021379
PMCID: PMC3006815

Triethyl­ammonium 4-nitro­benzene­sulfonate

Abstract

In the anion of the title molecular salt, C6H16N+·C6H4O5S, the nitro group is twisted slightly from the benzene ring, making a dihedral angle of 3.16 (10)°. In the crystal structure, the cations and anions are linked into a two-dimensional network parallel to the ab plane by C—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For general background to and the synthesis of the title compound, see: Dann & Davies (1929 [triangle]); D’Souza et al. (2008 [triangle]); Hunig et al. (1965 [triangle]); Kim et al. (1999 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]). For a related structure, see: Quah et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1647-scheme1.jpg

Experimental

Crystal data

  • C6H16N+·C6H4NO5S
  • M r = 304.36
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1647-efi1.jpg
  • a = 7.8015 (14) Å
  • b = 12.669 (2) Å
  • c = 29.910 (6) Å
  • V = 2956.3 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 100 K
  • 0.22 × 0.18 × 0.14 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.950, T max = 0.967
  • 21787 measured reflections
  • 5605 independent reflections
  • 3985 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.135
  • S = 1.01
  • 5605 reflections
  • 261 parameters
  • All H-atom parameters refined
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021379/wn2392sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021379/wn2392Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of a USM Fellowship.

supplementary crystallographic information

Comment

Aromatic nitro sulfonyl compounds are very important since they can be used as raw materials for the manufacture of sulfanilamide preparations. o-Nitrobenzenesulfonylhydrazide (NBSH) is a very important reagent for the synthesis of allenes from propargylic alcohols. The preparation of NBSH from o-nitrobenzenesulfonyl chloride and hydrazine in benzene was described in 1929 by Dann and Davies (Dann & Davies, 1929; D'Souza et al., 2008; Hunig et al., 1965; Kim et al., 1999).

The asymmetric unit (Fig. 1) of the title compound contains one triethylammonium cation and one 4-nitrobenzenesulfonate anion. A proton transfer from the sulfonic acid group of 4-nitrobenzenesulfonic acid to atom N2 of triethylamine resulted in the formation of ions. In the anion, the nitro group is twisted slightly from the attached ring; the dihedral angle between the C1—C6 and O1/O2/N1/C1 planes is 3.16 (10)°. The bond lengths and angles in the 4-nitrobenzenesulfonate anion are within normal ranges and similar to those in a comparable crystal structure (Quah et al., 2008). In the crystal structure, the cations and anions are linked to form a two-dimensional network (Fig. 2) parallel to the ab-plane by C—H···O and N—H···O hydrogen bonds (Table 1).

Experimental

4-Nitrobenzenesulfonyl chloride (0.01 mol, 2.05 g) was dissolved in 25 ml of tetrahydrofuran (THF) in a round-bottomed flask with stirring. Triethylamine (0.01 mol, 0.70 g) was mixed with some THF and added to the flask dropwise with stirring. The reaction mixture was refluxed for 2.5 h and left at room temperature overnight. The needle crystals that were formed were then filtered off, washed with water and dried at 353 K.

Refinement

All H atoms were located in a difference Fourier map and refined freely [N2—H1N2 = 0.95 (2) Å and C—H = 0.92 (3) - 1.03 (2) Å].

Figures

Fig. 1.
The structures of the two ions of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
Fig. 2.
The crystal structure of the title compound viewed along the c axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C6H16N+·C6H4NO5SF(000) = 1296
Mr = 304.36Dx = 1.368 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2801 reflections
a = 7.8015 (14) Åθ = 2.7–30.9°
b = 12.669 (2) ŵ = 0.24 mm1
c = 29.910 (6) ÅT = 100 K
V = 2956.3 (9) Å3Block, yellow
Z = 80.22 × 0.18 × 0.14 mm

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer5605 independent reflections
Radiation source: fine-focus sealed tube3985 reflections with I > 2σ(I)
graphiteRint = 0.064
[var phi] and ω scansθmax = 33.2°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −8→12
Tmin = 0.950, Tmax = 0.967k = −9→19
21787 measured reflectionsl = −40→46

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135All H-atom parameters refined
S = 1.01w = 1/[σ2(Fo2) + (0.0731P)2] where P = (Fo2 + 2Fc2)/3
5605 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.38577 (5)0.17193 (3)0.095990 (11)0.01330 (9)
O10.2417 (3)−0.17343 (11)0.26000 (4)0.0524 (5)
O20.37185 (19)−0.05239 (12)0.29767 (4)0.0372 (3)
O30.25347 (14)0.13583 (9)0.06573 (3)0.0195 (2)
O40.55993 (14)0.14889 (8)0.07988 (3)0.0172 (2)
O50.36886 (15)0.28080 (8)0.11063 (4)0.0206 (2)
N10.3145 (2)−0.08793 (12)0.26271 (4)0.0265 (3)
C10.3331 (2)−0.02431 (12)0.22174 (5)0.0184 (3)
C20.2606 (2)−0.06215 (11)0.18258 (5)0.0174 (3)
C30.27633 (19)−0.00053 (11)0.14418 (5)0.0157 (3)
C40.36392 (18)0.09467 (10)0.14563 (4)0.0134 (2)
C50.4376 (2)0.13060 (12)0.18557 (5)0.0187 (3)
C60.4220 (2)0.07070 (13)0.22423 (5)0.0214 (3)
N20.79571 (17)0.31410 (9)0.08449 (4)0.0151 (2)
C70.7094 (2)0.42076 (11)0.08501 (5)0.0192 (3)
C80.6060 (2)0.44251 (13)0.04323 (6)0.0239 (3)
C90.8950 (2)0.29787 (13)0.12722 (5)0.0212 (3)
C100.9187 (2)0.18278 (14)0.13903 (6)0.0242 (3)
C110.9015 (2)0.29386 (12)0.04305 (5)0.0166 (3)
C121.0456 (2)0.37245 (13)0.03620 (5)0.0206 (3)
H2A0.195 (3)−0.1264 (16)0.1819 (6)0.023 (5)*
H3A0.215 (3)−0.0242 (14)0.1159 (6)0.021 (5)*
H5A0.498 (3)0.2009 (16)0.1862 (6)0.022 (5)*
H6A0.471 (3)0.0962 (17)0.2514 (7)0.035 (6)*
H7A0.641 (3)0.4184 (16)0.1120 (7)0.027 (5)*
H7B0.807 (3)0.4712 (16)0.0893 (6)0.020 (5)*
H8A0.679 (3)0.4491 (16)0.0171 (6)0.027 (5)*
H8B0.517 (3)0.3859 (17)0.0374 (7)0.028 (5)*
H8C0.529 (3)0.5072 (17)0.0482 (7)0.028 (5)*
H9A1.007 (3)0.3338 (14)0.1233 (6)0.020 (5)*
H9B0.830 (3)0.3364 (16)0.1497 (7)0.027 (5)*
H10A0.981 (3)0.1804 (17)0.1669 (8)0.039 (6)*
H10B0.989 (3)0.1457 (18)0.1178 (7)0.036 (6)*
H10C0.817 (4)0.147 (2)0.1432 (7)0.042 (6)*
H11A0.825 (3)0.2928 (14)0.0187 (6)0.014 (4)*
H11B0.954 (3)0.2213 (15)0.0474 (6)0.016 (4)*
H12A1.143 (3)0.3620 (15)0.0569 (6)0.021 (5)*
H12B1.008 (3)0.4425 (17)0.0365 (6)0.026 (5)*
H12C1.100 (3)0.3593 (19)0.0071 (8)0.036 (6)*
H1N20.702 (3)0.2662 (15)0.0832 (6)0.017 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01496 (15)0.01173 (14)0.01322 (16)0.00071 (12)−0.00004 (11)0.00010 (10)
O10.0965 (15)0.0357 (8)0.0251 (7)−0.0290 (9)−0.0008 (8)0.0093 (5)
O20.0421 (8)0.0529 (9)0.0166 (6)−0.0118 (7)−0.0060 (5)0.0093 (5)
O30.0202 (5)0.0233 (5)0.0152 (5)−0.0025 (4)−0.0050 (4)0.0020 (4)
O40.0169 (5)0.0156 (4)0.0191 (5)0.0004 (4)0.0036 (4)−0.0003 (4)
O50.0293 (6)0.0124 (4)0.0199 (5)0.0041 (4)0.0022 (4)−0.0009 (4)
N10.0325 (8)0.0300 (7)0.0170 (6)−0.0024 (6)0.0024 (6)0.0060 (5)
C10.0217 (7)0.0208 (6)0.0127 (6)0.0010 (6)0.0023 (5)0.0034 (5)
C20.0213 (7)0.0147 (6)0.0163 (6)−0.0011 (6)0.0024 (5)−0.0002 (5)
C30.0182 (6)0.0154 (6)0.0135 (6)0.0005 (5)0.0006 (5)−0.0010 (4)
C40.0138 (6)0.0139 (5)0.0126 (6)0.0020 (5)0.0004 (5)−0.0007 (4)
C50.0218 (7)0.0177 (6)0.0165 (7)−0.0038 (6)−0.0013 (5)−0.0013 (5)
C60.0248 (8)0.0255 (7)0.0139 (6)−0.0031 (6)−0.0035 (6)−0.0012 (5)
N20.0185 (6)0.0132 (5)0.0136 (5)−0.0021 (5)0.0002 (4)0.0006 (4)
C70.0242 (7)0.0130 (6)0.0203 (7)0.0007 (6)0.0035 (6)−0.0009 (5)
C80.0271 (8)0.0218 (7)0.0229 (8)0.0061 (7)0.0008 (6)0.0042 (6)
C90.0294 (8)0.0224 (7)0.0119 (6)−0.0032 (6)−0.0020 (6)0.0014 (5)
C100.0215 (8)0.0275 (8)0.0234 (8)0.0041 (7)−0.0023 (6)0.0059 (6)
C110.0215 (7)0.0165 (6)0.0117 (6)0.0018 (6)0.0004 (5)−0.0013 (5)
C120.0199 (7)0.0234 (7)0.0183 (7)−0.0008 (6)0.0025 (6)0.0018 (5)

Geometric parameters (Å, °)

S1—O31.4468 (11)N2—H1N20.95 (2)
S1—O51.4531 (11)C7—C81.513 (2)
S1—O41.4709 (11)C7—H7A0.97 (2)
S1—C41.7865 (14)C7—H7B1.00 (2)
O1—N11.226 (2)C8—H8A0.97 (2)
O2—N11.2233 (19)C8—H8B1.01 (2)
N1—C11.4738 (19)C8—H8C1.03 (2)
C1—C21.386 (2)C9—C101.512 (2)
C1—C61.391 (2)C9—H9A0.99 (2)
C2—C31.394 (2)C9—H9B0.97 (2)
C2—H2A0.96 (2)C10—H10A0.97 (2)
C3—C41.387 (2)C10—H10B0.96 (2)
C3—H3A1.015 (19)C10—H10C0.92 (3)
C4—C51.402 (2)C11—C121.516 (2)
C5—C61.388 (2)C11—H11A0.943 (18)
C5—H5A1.01 (2)C11—H11B1.014 (19)
C6—H6A0.96 (2)C12—H12A0.99 (2)
N2—C91.5087 (19)C12—H12B0.93 (2)
N2—C71.5101 (19)C12—H12C0.98 (2)
N2—C111.5110 (19)
O3—S1—O5115.07 (7)C8—C7—H7A113.7 (13)
O3—S1—O4113.04 (7)N2—C7—H7B103.5 (12)
O5—S1—O4111.77 (7)C8—C7—H7B113.2 (11)
O3—S1—C4106.18 (6)H7A—C7—H7B109.3 (16)
O5—S1—C4105.13 (6)C7—C8—H8A111.7 (13)
O4—S1—C4104.57 (6)C7—C8—H8B112.2 (11)
O2—N1—O1123.45 (14)H8A—C8—H8B108.7 (16)
O2—N1—C1118.27 (14)C7—C8—H8C109.8 (11)
O1—N1—C1118.28 (14)H8A—C8—H8C113.0 (16)
C2—C1—C6123.21 (13)H8B—C8—H8C101.0 (17)
C2—C1—N1118.25 (14)N2—C9—C10113.09 (13)
C6—C1—N1118.53 (13)N2—C9—H9A106.9 (11)
C1—C2—C3117.81 (14)C10—C9—H9A111.2 (11)
C1—C2—H2A121.8 (11)N2—C9—H9B104.5 (13)
C3—C2—H2A120.3 (11)C10—C9—H9B112.7 (12)
C4—C3—C2120.31 (13)H9A—C9—H9B108.0 (16)
C4—C3—H3A120.9 (11)C9—C10—H10A107.0 (13)
C2—C3—H3A118.6 (11)C9—C10—H10B112.8 (13)
C3—C4—C5120.74 (13)H10A—C10—H10B106 (2)
C3—C4—S1119.83 (10)C9—C10—H10C113.7 (16)
C5—C4—S1119.42 (11)H10A—C10—H10C107.5 (19)
C6—C5—C4119.75 (14)H10B—C10—H10C110 (2)
C6—C5—H5A120.6 (10)N2—C11—C12113.86 (12)
C4—C5—H5A119.6 (10)N2—C11—H11A106.8 (11)
C5—C6—C1118.18 (14)C12—C11—H11A112.1 (11)
C5—C6—H6A119.3 (14)N2—C11—H11B105.6 (10)
C1—C6—H6A122.6 (14)C12—C11—H11B108.3 (11)
C9—N2—C7110.01 (12)H11A—C11—H11B109.9 (15)
C9—N2—C11113.05 (12)C11—C12—H12A113.4 (11)
C7—N2—C11113.83 (11)C11—C12—H12B113.1 (13)
C9—N2—H1N2110.1 (11)H12A—C12—H12B111.1 (17)
C7—N2—H1N2103.1 (11)C11—C12—H12C109.2 (14)
C11—N2—H1N2106.2 (11)H12A—C12—H12C101.6 (17)
N2—C7—C8113.10 (12)H12B—C12—H12C107.7 (18)
N2—C7—H7A103.1 (12)
O2—N1—C1—C2−176.81 (16)O5—S1—C4—C5−38.73 (14)
O1—N1—C1—C22.8 (2)O4—S1—C4—C579.13 (13)
O2—N1—C1—C63.1 (2)C3—C4—C5—C6−0.4 (2)
O1—N1—C1—C6−177.33 (18)S1—C4—C5—C6−179.65 (12)
C6—C1—C2—C3−0.9 (2)C4—C5—C6—C10.3 (2)
N1—C1—C2—C3178.93 (14)C2—C1—C6—C50.4 (3)
C1—C2—C3—C40.8 (2)N1—C1—C6—C5−179.46 (15)
C2—C3—C4—C5−0.1 (2)C9—N2—C7—C8−179.61 (14)
C2—C3—C4—S1179.10 (11)C11—N2—C7—C852.33 (18)
O3—S1—C4—C319.67 (13)C7—N2—C9—C10154.66 (14)
O5—S1—C4—C3142.05 (12)C11—N2—C9—C10−76.86 (17)
O4—S1—C4—C3−100.09 (12)C9—N2—C11—C12−66.52 (16)
O3—S1—C4—C5−161.10 (12)C7—N2—C11—C1259.96 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N2···O40.95 (2)1.86 (2)2.7899 (17)166 (2)
C2—H2A···O5i0.96 (2)2.485 (19)3.1000 (19)121.7 (14)
C7—H7B···O4ii1.00 (2)2.50 (2)3.4081 (19)151.3 (16)
C10—H10B···O3iii0.96 (2)2.59 (2)3.461 (2)151.1 (18)
C12—H12A···O5iii0.99 (2)2.60 (2)3.559 (2)164.1 (16)

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x+3/2, y+1/2, z; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2392).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Dann, A. T. & Davies, W. (1929). J. Chem. Soc. pp. 1050–1058.
  • D’Souza, M. J., Yaakoubd, S. L. & Kevill, D. N. (2008). Int. J. Mol. Sci.9, 914–925. [PMC free article] [PubMed]
  • Hunig, S., Muller, H. R. & Their, W. (1965). Angew. Chem. Int. Ed. Engl.4, 271–279.
  • Kim, Y. H., Jung, J. C., Choi, H. C. & Yang, S. G. (1999). Pure Appl. Chem.71, 377–384.
  • Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o1878–o1879. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography