PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1709–o1710.
Published online 2010 June 18. doi:  10.1107/S1600536810022440
PMCID: PMC3006814

9-Ethynyl-1,2-dimethyl-1,2-dicarba-closo-dodeca­borane (1,2-Me2-9-HC C-closo-1,2-C2B10H9)

Abstract

The asymmetric unit of the title compound, C6H16B10, contains one mol­ecule that is close to possessing a non-crystallographic plane of mirror symmetry in the space group Pna21. The orientation of the mol­ecules in the ortho­rhom­bic cell shows that the structure can not be described in the space group Pnma, which has the same systematic absence conditions. The long inner-cluster C—C distance of 1.510 (5) Å is typical for {1,2-Me2-closo-1,2-C2B10} derivatives.

Related literature

For a general overview of the functionalization of dicarba-closo-dodeca­boranes, see: Bregadze (1992 [triangle]); Kalinin & Ol’shevskaya (2008 [triangle]). For the synthesis and properties of {closo-1,2-C2B10} clusters with ethynyl groups bonded to boron, see: Zakharkin et al. (1981 [triangle]); Himmelspach & Finze (2010a [triangle]). For structures of related icosa­hedral boron cages with alkynyl groups bonded to boron, see: Finze (2008 [triangle]); Himmelspach & Finze (2010b [triangle]). For intensity statistics of Friedel opposites for all non-centrosymmetric space groups, see: Shmueli et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1709-scheme1.jpg

Experimental

Crystal data

  • C6H16B10
  • M r = 196.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1709-efi1.jpg
  • a = 14.5368 (8) Å
  • b = 7.0085 (3) Å
  • c = 12.5373 (5) Å
  • V = 1277.32 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.05 mm−1
  • T = 290 K
  • 0.4 × 0.2 × 0.2 mm

Data collection

  • Oxford Diffraction Xcalibur Eos diffractometer
  • 11327 measured reflections
  • 1181 independent reflections
  • 1049 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.104
  • S = 1.06
  • 1181 reflections
  • 150 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND Brandenburg, 2010 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022440/si2268sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022440/si2268Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support by the Fonds der Chemischen Industrie (FCI) is gratefully acknowledged.

supplementary crystallographic information

Comment

The interest in functionalized dicarba-closo-dodecaboranes as building blocks for a broad range of applications is steadily increasing because of their high chemical and thermal stability as well as the diversity of their substitution patterns at the boron cage (Bregadze, 1992; Kalinin & Ol'shevskaya, 2008). The synthesis of {closo-C2B10} clusters with alkynyl groups bonded to boron is achieved by Pd-catalyzed Kumada-type cross-coupling reactions using the iodinated clusters and alkynyl Grignard reagents as precursors (Zakharkin et al., 1981; Himmelspach & Finze, 2010a). The title compound 1,2-dimethyl-9-ethynyl-1,2-dicarba-closo-dodecaborane, which is the first structurally characterized monoethynyldicarba-closo-dodecaborane with a Bcluster—C[equivalent]C—H unit, crystallizes in the orthorhombic acentric space group Pna21 with one complete molecule in the asymmetric unit. The bond lengths and angles of the {closo-1,2-C2B10} cage of 1,2-Me2-9-HC[equivalent]C-closo-1,2- C2B10H9 are similar to those reported for the related bis(trimethylsilylalkynyl) substituted derivative 1,2-Me2 -9,12-(Me3SiC[equivalent]C)2-closo-1,2-C2B10H9 (Himmelspach & Finze, 2010a). The B—C and C[equivalent]C distances are similar to values reported for the diethynyldicarba-closo-dodecaboranes 9,12-(HC[equivalent]C)2-closo-1,2-C2B10H10 and 9,10-(HC[equivalent]C)2-closo-1,7-C2B10H10 (Himmelspach & Finze, 2010a) and the related anionic monocarba-closo-dodecaborate anions [12-HC[equivalent] C-closo-1-CB11H11]- and [7,12-(HC[equivalent]C)2closo-1-CB11H10]- (Himmelspach & Finze, 2010b).

Experimental

1,2-Me2-9-HC[equivalent]C-closo-1,2-C2B10H9 was synthesized according to a published procedure and the spectroscopic data have been reported earlier (Himmelspach & Finze, 2010a). The compound was dissolved in acetonitrile and slow evaporation of the solvent resulted in colorless crystals.

Refinement

All hydrogen atom positions were obtained from difference fourier maps. The hydrogen atoms of the methyl groups were included in the latest stages of the refinement with a riding model and for each methyl group a common Uiso value was refined. The hydrogen atoms bonded to the carborane cluster were included in the refinement with a riding model (AFIX 153) and their Uiso values were set to 1.2 of the equivalent isotropic displacement parameter of the corresponding parent atom. The hydrogen atom of the ethynyl group was positioned using a riding model (AFIX 163) and its Uiso was refined freely. In the absence of significant anomalous scattering effects, Friedel pairs were averaged, resulting in a low reflection to parameter ratio (Shmueli et al., 2008).

Figures

Fig. 1.
: Hydrogen atoms are drawn with arbitrary radii and the displacement ellipsoids are shown at the 35% probability level.
Fig. 2.
: Packing of the title compound along [0–10] showing that the non-crystallographic mirror symmetry of the molecule is not consistent with the metric and the symmetry of the true space group Pna21.

Crystal data

C6H16B10F(000) = 408
Mr = 196.29Dx = 1.021 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6575 reflections
a = 14.5368 (8) Åθ = 3.2–27.2°
b = 7.0085 (3) ŵ = 0.05 mm1
c = 12.5373 (5) ÅT = 290 K
V = 1277.32 (10) Å3Prism, colourless
Z = 40.4 × 0.2 × 0.2 mm

Data collection

Oxford Diffraction Xcalibur Eos diffractometer1049 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.042
graphiteθmax = 25.0°, θmin = 3.2°
Detector resolution: 16.2711 pixels mm-1h = −17→17
ω scansk = −8→8
11327 measured reflectionsl = −14→14
1181 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.005P)2 + 0.630P] where P = (Fo2 + 2Fc2)/3
1181 reflections(Δ/σ)max = 0.010
150 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1554 (3)1.0151 (6)0.6353 (3)0.0654 (11)
C30.0608 (3)1.0836 (9)0.6036 (4)0.1134 (19)
H3A0.03611.16290.65920.175 (15)*
H3B0.02110.97570.59290.175 (15)*
H3C0.06491.15570.53870.175 (15)*
C20.1709 (2)0.9362 (5)0.7606 (3)0.0603 (10)
C40.0899 (3)0.9387 (7)0.8384 (4)0.0973 (16)
H4A0.10760.87720.90370.171 (14)*
H4B0.03880.87210.80740.171 (14)*
H4C0.07261.06830.85290.171 (14)*
B30.1682 (3)0.7752 (7)0.6574 (3)0.0651 (12)
H30.11300.66990.64570.078*
B40.2219 (3)0.8917 (6)0.5497 (3)0.0600 (11)
H40.20230.86130.46670.072*
B50.2525 (3)1.1224 (7)0.5909 (4)0.0641 (12)
H50.25331.24260.53460.077*
B60.2166 (3)1.1519 (6)0.7254 (4)0.0655 (12)
H60.19291.28980.75730.079*
B70.2479 (3)0.7542 (7)0.7621 (4)0.0641 (11)
H70.24580.63350.81820.077*
B80.2840 (3)0.7257 (6)0.6277 (4)0.0618 (11)
H80.30610.58700.59570.074*
B90.3368 (3)0.9424 (6)0.5869 (3)0.0569 (10)
B100.3323 (3)1.1052 (7)0.6967 (4)0.0641 (12)
H100.38591.21340.70980.077*
B110.2770 (3)0.9867 (7)0.8032 (4)0.0634 (11)
H110.29401.01750.88690.076*
B120.3516 (3)0.8587 (7)0.7199 (4)0.0654 (12)
H120.41850.80610.74850.078*
C50.4156 (3)0.9438 (6)0.5044 (4)0.0741 (11)
C60.4772 (3)0.9437 (7)0.4438 (5)0.1044 (17)
H10.52600.94350.39580.15 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.061 (2)0.078 (3)0.058 (2)0.009 (2)−0.0032 (19)0.000 (2)
C30.082 (3)0.156 (5)0.102 (4)0.045 (3)−0.009 (3)0.001 (4)
C20.063 (2)0.066 (2)0.052 (2)−0.0107 (18)0.0106 (19)−0.007 (2)
C40.090 (3)0.120 (4)0.082 (3)−0.026 (3)0.033 (3)−0.013 (3)
B30.072 (3)0.062 (3)0.061 (3)−0.020 (2)0.001 (2)−0.012 (2)
B40.067 (2)0.070 (3)0.044 (2)−0.003 (2)−0.005 (2)−0.007 (2)
B50.086 (3)0.056 (2)0.051 (2)0.002 (2)0.005 (2)0.004 (2)
B60.081 (3)0.053 (2)0.062 (3)−0.006 (2)0.015 (2)−0.010 (2)
B70.091 (3)0.053 (2)0.048 (2)−0.006 (2)0.002 (2)0.007 (2)
B80.082 (3)0.047 (2)0.057 (2)0.005 (2)0.005 (2)−0.001 (2)
B90.059 (2)0.062 (2)0.050 (2)−0.003 (2)0.003 (2)−0.001 (2)
B100.065 (3)0.067 (3)0.061 (3)−0.023 (2)0.002 (2)−0.007 (3)
B110.075 (3)0.070 (3)0.045 (2)−0.014 (2)−0.002 (2)−0.006 (2)
B120.061 (2)0.080 (3)0.056 (3)0.005 (2)−0.009 (2)0.001 (2)
C50.072 (2)0.081 (3)0.070 (3)−0.002 (2)0.015 (2)−0.002 (2)
C60.094 (3)0.119 (4)0.101 (3)−0.004 (3)0.042 (3)−0.003 (3)

Geometric parameters (Å, °)

C1—C31.510 (5)B5—B91.759 (6)
C1—C21.680 (5)B5—B101.766 (6)
C1—B41.684 (6)B5—B61.778 (6)
C1—B51.693 (6)B5—H51.1000
C1—B31.714 (6)B6—B111.750 (7)
C1—B61.728 (6)B6—B101.751 (6)
C3—H3A0.9600B6—H61.1000
C3—H3B0.9600B7—B111.760 (6)
C3—H3C0.9600B7—B121.757 (6)
C2—C41.529 (5)B7—B81.776 (6)
C2—B111.670 (6)B7—H71.1000
C2—B71.697 (6)B8—B91.777 (6)
C2—B61.709 (6)B8—B121.781 (6)
C2—B31.717 (5)B8—H81.1000
C4—H4A0.9600B9—C51.544 (5)
C4—H4B0.9600B9—B121.780 (6)
C4—H4C0.9600B9—B101.789 (6)
B3—B71.758 (6)B10—B111.765 (7)
B3—B81.758 (6)B10—B121.774 (7)
B3—B41.760 (6)B10—H101.1000
B3—H31.1000B11—B121.752 (6)
B4—B51.755 (6)B11—H111.1000
B4—B81.767 (6)B12—H121.1000
B4—B91.769 (6)C5—C61.175 (6)
B4—H41.1000C6—H10.9300
C3—C1—C2118.2 (3)C2—B6—H6124.2
C3—C1—B4121.2 (4)C1—B6—H6124.3
C2—C1—B4110.5 (3)B11—B6—H6122.4
C3—C1—B5122.1 (4)B10—B6—H6122.6
C2—C1—B5110.0 (3)B5—B6—H6122.6
B4—C1—B562.6 (2)C2—B7—B1157.7 (2)
C3—C1—B3116.9 (4)C2—B7—B359.6 (2)
C2—C1—B360.8 (2)B11—B7—B3107.4 (3)
B4—C1—B362.4 (3)C2—B7—B12104.4 (3)
B5—C1—B3113.5 (3)B11—B7—B1259.7 (3)
C3—C1—B6117.7 (4)B3—B7—B12107.8 (3)
C2—C1—B660.2 (2)C2—B7—B8105.6 (3)
B4—C1—B6114.0 (3)B11—B7—B8108.1 (3)
B5—C1—B662.6 (3)B3—B7—B859.7 (3)
B3—C1—B6112.5 (3)B12—B7—B860.5 (3)
C1—C3—H3A109.5C2—B7—H7124.5
C1—C3—H3B109.5B11—B7—H7122.1
H3A—C3—H3B109.5B3—B7—H7121.6
C1—C3—H3C109.5B12—B7—H7122.4
H3A—C3—H3C109.5B8—B7—H7121.9
H3B—C3—H3C109.5B3—B8—B459.9 (3)
C4—C2—B11120.3 (3)B3—B8—B9107.8 (3)
C4—C2—C1119.3 (3)B4—B8—B959.9 (2)
B11—C2—C1110.7 (3)B3—B8—B759.6 (2)
C4—C2—B7120.6 (4)B4—B8—B7107.5 (3)
B11—C2—B763.0 (2)B9—B8—B7107.7 (3)
C1—C2—B7110.3 (3)B3—B8—B12106.7 (3)
C4—C2—B6116.9 (3)B4—B8—B12107.2 (3)
B11—C2—B662.4 (3)B9—B8—B1260.1 (2)
C1—C2—B661.3 (2)B7—B8—B1259.2 (3)
B7—C2—B6114.3 (3)B3—B8—H8122.2
C4—C2—B3118.0 (3)B4—B8—H8122.0
B11—C2—B3113.7 (3)B9—B8—H8121.6
C1—C2—B360.6 (2)B7—B8—H8122.1
B7—C2—B362.0 (2)B12—B8—H8122.5
B6—C2—B3113.3 (3)C5—B9—B5122.1 (3)
C2—C4—H4A109.5C5—B9—B4121.7 (3)
C2—C4—H4B109.5B5—B9—B459.7 (2)
H4A—C4—H4B109.5C5—B9—B8121.3 (3)
C2—C4—H4C109.5B5—B9—B8107.7 (3)
H4A—C4—H4C109.5B4—B9—B859.8 (3)
H4B—C4—H4C109.5C5—B9—B12122.6 (3)
C1—B3—C258.6 (2)B5—B9—B12107.1 (3)
C1—B3—B7105.9 (3)B4—B9—B12107.1 (3)
C2—B3—B758.4 (2)B8—B9—B1260.1 (2)
C1—B3—B8105.3 (3)C5—B9—B10122.6 (3)
C2—B3—B8105.5 (3)B5—B9—B1059.7 (3)
B7—B3—B860.7 (3)B4—B9—B10107.3 (3)
C1—B3—B458.0 (2)B8—B9—B10107.9 (3)
C2—B3—B4105.2 (3)B12—B9—B1059.6 (3)
B7—B3—B4108.6 (3)B6—B10—B560.7 (3)
B8—B3—B460.3 (2)B6—B10—B1159.7 (3)
C1—B3—H3123.9B5—B10—B11107.5 (3)
C2—B3—H3124.0B6—B10—B12107.5 (3)
B7—B3—H3121.6B5—B10—B12107.0 (3)
B8—B3—H3122.5B11—B10—B1259.3 (3)
B4—B3—H3122.2B6—B10—B9108.2 (3)
C1—B4—B559.0 (2)B5—B10—B959.3 (3)
C1—B4—B359.6 (3)B11—B10—B9107.4 (3)
B5—B4—B3108.3 (3)B12—B10—B960.0 (2)
C1—B4—B8106.2 (3)B6—B10—H10121.4
B5—B4—B8108.3 (3)B5—B10—H10122.0
B3—B4—B859.8 (3)B11—B10—H10122.3
C1—B4—B9105.7 (3)B12—B10—H10122.3
B5—B4—B959.9 (3)B9—B10—H10121.9
B3—B4—B9108.1 (3)C2—B11—B659.9 (2)
B8—B4—B960.3 (2)C2—B11—B759.2 (3)
C1—B4—H4123.6B6—B11—B7109.2 (3)
B5—B4—H4121.5C2—B11—B12105.8 (3)
B3—B4—H4121.4B6—B11—B12108.5 (3)
B8—B4—H4121.9B7—B11—B1260.0 (3)
B9—B4—H4122.2C2—B11—B10106.2 (3)
C1—B5—B458.4 (2)B6—B11—B1059.8 (3)
C1—B5—B9105.8 (3)B7—B11—B10108.9 (3)
B4—B5—B960.5 (2)B12—B11—B1060.6 (3)
C1—B5—B10105.7 (3)C2—B11—H11123.6
B4—B5—B10109.0 (3)B6—B11—H11121.0
B9—B5—B1061.0 (3)B7—B11—H11121.0
C1—B5—B659.7 (3)B12—B11—H11122.0
B4—B5—B6108.2 (3)B10—B11—H11121.8
B9—B5—B6108.4 (3)B11—B12—B760.2 (3)
B10—B5—B659.2 (3)B11—B12—B1060.1 (3)
C1—B5—H5124.1B7—B12—B10108.6 (3)
B4—B5—H5121.3B11—B12—B9108.3 (3)
B9—B5—H5121.6B7—B12—B9108.4 (3)
B10—B5—H5121.9B10—B12—B960.4 (3)
B6—B5—H5121.5B11—B12—B8108.2 (3)
C2—B6—C158.5 (2)B7—B12—B860.3 (2)
C2—B6—B1157.7 (2)B10—B12—B8108.4 (3)
C1—B6—B11104.8 (3)B9—B12—B859.9 (2)
C2—B6—B10105.1 (3)B11—B12—H12121.6
C1—B6—B10104.8 (3)B7—B12—H12121.3
B11—B6—B1060.5 (3)B10—B12—H12121.3
C2—B6—B5104.8 (3)B9—B12—H12121.5
C1—B6—B557.7 (3)B8—B12—H12121.6
B11—B6—B5107.7 (3)C6—C5—B9178.2 (5)
B10—B6—B560.0 (3)C5—C6—H1180.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2268).

References

  • Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bregadze, V. I. (1992). Chem. Rev.92, 209–223.
  • Finze, M. (2008). Inorg. Chem.47, 11857–11867. [PubMed]
  • Himmelspach, A. & Finze, M. (2010a). Eur. J. Inorg. Chem. pp. 2012–2024.
  • Himmelspach, A. & Finze, M. (2010b). J. Organomet. Chem.695, 1337–1345.
  • Kalinin, V. N. & Ol’shevskaya, V. A. (2008). Russ. Chem. Bull.57, 815–836.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shmueli, U., Schiltz, M. & Flack, H. D. (2008). Acta Cryst. A64, 476–483. [PubMed]
  • Zakharkin, L. I., Kovredov, A. I. & Ol’shevskaya, V. A. (1981). Russ. J. Gen. Chem.51, 2422

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography