PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m746–m747.
Published online 2010 June 5. doi:  10.1107/S1600536810020210
PMCID: PMC3006809

Bis(1,10-phenanthroline-κ2 N,N′)(sulfato-κ2 O,O′)nickel(II) propane-1,3-diol solvate

Abstract

In the structure of the title compound, [Ni(SO4)(C12H8N2)2]·C3H8O2, the NiII ion (site symmetry 2) is six-coordinated in a distorted octa­hedral manner by four N atoms from two chelating 1,10-phenanthroline (phen) ligands and two O atoms from a bidentate sulfate ligand (2 symmetry). The dihedral angle between the two chelating NCCN groups is 80.9 (1)°. The central C atom of the propane-1,3-diol solvent mol­ecule is likewise located on a twofold rotation axis. In the crystal structure, the [Ni(SO4)(C12H8N2)2] and C3H8O2 entities are connected through inter­molecular O—H(...)O hydrogen bonding.

Related literature

For the isotypic Zn and Co structures, see: Cui et al. (2010 [triangle]) and Zhong (2010 [triangle]), respectively. For the ethane-1,2-diol solvate of the title complex, see: Zhong et al. (2009 [triangle]). For background to coordination polymers constructed from N-containing ligands, see: Zhang et al. (1999 [triangle]); Blake et al. (2007 [triangle]); Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m746-scheme1.jpg

Experimental

Crystal data

  • [Ni(SO4)(C12H8N2)2]·C3H8O2
  • M r = 591.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m746-efi2.jpg
  • a = 18.243 (4) Å
  • b = 12.440 (3) Å
  • c = 13.180 (3) Å
  • β = 121.58 (3)°
  • V = 2548.2 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.90 mm−1
  • T = 223 K
  • 0.55 × 0.50 × 0.40 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB: Jacobson, 1998 [triangle]) T min = 0.750, T max = 1.000
  • 7078 measured reflections
  • 2877 independent reflections
  • 2630 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.093
  • S = 1.05
  • 2877 reflections
  • 179 parameters
  • H-atom parameters constrained
  • Δρmax = 0.79 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: CrystalClear (Rigaku, 2007 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020210/wm2347sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020210/wm2347Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010-17) and Undergraduate Scientific and Technological Innovation Project of Nanjing College of Chemical Technology (2009).

supplementary crystallographic information

Comment

Many N containing ligands, such as 1,10-phenanthroline, 4,4'-bipyridine and 2,2'-bipyridine have been widely applied in constructing coordination polymers as auxiliary ligands (Zhang et al., 1999; Blake et al., 2007; Wang et al., 2007). The title nickel compound, [NiSO4(C12H8N2)2].C3H8O2, (I), was obtained unintentionally during an attempt to synthesize coordination polymers of NiII with 1,10-phenanthroline as second ligand via a solvothermal reaction. (I) is isotypic with the recently reported cobalt(II) and zinc(II) structures [Zhong 2010, (II); Cui et al., 2010, (III)].

The metal complex and solvent entities of (I) are held together by two intermolecular O—H···O hydrogen bonds including the uncoordinated O atoms of the sulfate group (Fig. 1). In the complex molecule, the NiII atom is six-coordinated in a distorted octahedral manner by four N atoms from two chelating 1,10-phenanthroline (phen) ligands and two O atoms from a bidentate-chelating sulfate anion. The Ni—O bond length [2.1127 (14) Å], the O—Ni—O bite angle [67.73 (7)°], the Ni—N bond lengths [2.0775 (16) and 2.0802 (16) Å], and the N—Ni—N bite angle [80.05 (6)°] are in good agreement with those of the observed in the ethane-1,2-diol solvate [NiSO4(C12H8N2)2].C2H6O2, (IV), [2.1077 (16) Å, 67.58 (8)°, 2.0774 (18), 2.0805 (15)Å and 79.99 (7)°, respectively; Zhong et al., 2009]. The two chelating NCCN groups have a dihedral angle of 80.9 (1)°, which is much larger than that found in the structure of (IV), 71.0°. The NiII, the S and the central C atom of the propane-1,3-diol solvent molecule lie on a twofold rotation axis. Selected bond lengths and angles are compiled in Table 1 and intermolecular hydrogen bonding in Table 2, respectively.

In the title complex, the geometry of the phen and sulfate ligands is in good agreement with those of the previously reported metal complexes, (II), (III) and (IV). The phen ligands are all planar with the largest deviation of atoms from their mean plane less than 0.03 Å. The bond distances and angles in phen [1.353 (3)-1.436 (2) Å and 116.97 (17)-123.95 (17)° Å, respectivly] are all normal. The S—O distances within the sulfate ligands, 1.4559 (14) Å for and 1.4950 (14) Å are also similar to those observed for (II), (III) and (VI).

Experimental

0.2 mmol phen, 0.1 mmol melamine, 0.1 mmol NiSO4.7H2O, 2.0 ml propane-1,3-diol and 1.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 413 K for 96 h. Blue block-shaped crystals of (I) were obtained after the reaction time.

Refinement

The H atoms of phen were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C). The other H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.97 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines represent O—H···O interactions. Unlabeled atoms are related ...

Crystal data

[Ni(SO4)(C12H8N2)2]·C3H8O2F(000) = 1224
Mr = 591.26Dx = 1.541 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6113 reflections
a = 18.243 (4) Åθ = 3.2–27.5°
b = 12.440 (3) ŵ = 0.90 mm1
c = 13.180 (3) ÅT = 223 K
β = 121.58 (3)°Block, blue
V = 2548.2 (13) Å30.55 × 0.50 × 0.40 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer2877 independent reflections
Radiation source: fine-focus sealed tube2630 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.017
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = −23→23
Absorption correction: multi-scan (REQAB: Jacobson, 1998)k = −16→13
Tmin = 0.750, Tmax = 1.000l = −16→17
7078 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.093w = 1/[σ2(Fo2) + (0.0574P)2 + 1.7246P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2877 reflectionsΔρmax = 0.79 e Å3
179 parametersΔρmin = −0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0115 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.31623 (2)0.25000.02219 (13)
S10.50000.53132 (5)0.25000.02350 (16)
O10.44210 (8)0.45725 (10)0.15044 (11)0.0300 (3)
O20.44999 (10)0.59777 (13)0.28297 (15)0.0422 (4)
N10.40871 (10)0.20994 (12)0.12675 (13)0.0245 (3)
N20.41995 (10)0.30246 (12)0.31754 (14)0.0252 (3)
C20.33170 (14)0.10453 (17)−0.05175 (18)0.0351 (4)
H2A0.32820.0788−0.12040.042*
C60.22391 (12)0.13600 (17)0.21208 (18)0.0345 (4)
H6A0.18430.11780.23340.041*
C70.29358 (12)0.20714 (16)0.28623 (17)0.0289 (4)
C90.37020 (14)0.32691 (16)0.45183 (18)0.0354 (4)
H9A0.37740.36020.51970.043*
C50.21523 (12)0.09508 (16)0.11125 (18)0.0338 (4)
H5A0.16850.05090.06300.041*
C40.27619 (11)0.11813 (14)0.07706 (16)0.0275 (4)
C100.42736 (12)0.34793 (16)0.41402 (17)0.0303 (4)
H10A0.47250.39560.45800.036*
C80.30380 (13)0.25725 (17)0.38851 (17)0.0356 (4)
H8A0.26530.24290.41290.043*
C10.40052 (13)0.17061 (15)0.02734 (17)0.0305 (4)
H1A0.44220.18770.00960.037*
C110.35423 (11)0.23219 (13)0.25508 (15)0.0239 (3)
C30.26998 (13)0.07832 (15)−0.02736 (17)0.0325 (4)
H3A0.22410.0345−0.07920.039*
C120.34677 (11)0.18502 (13)0.15061 (16)0.0233 (3)
C140.4235 (2)0.8716 (3)0.2220 (3)0.0797 (10)
H14A0.37380.91770.19520.096*
H14B0.41110.82300.15740.096*
C130.50000.9397 (3)0.25000.0588 (10)
O30.43615 (17)0.81214 (15)0.3188 (2)0.0711 (7)
H30.44030.74830.30720.107*
H130.51460.98590.31690.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02047 (18)0.01993 (18)0.02456 (19)0.0000.01067 (14)0.000
S10.0196 (3)0.0197 (3)0.0300 (3)0.0000.0122 (2)0.000
O10.0245 (6)0.0261 (6)0.0273 (7)−0.0002 (5)0.0052 (5)0.0017 (5)
O20.0377 (8)0.0369 (8)0.0568 (10)0.0089 (6)0.0281 (8)−0.0045 (7)
N10.0259 (7)0.0216 (7)0.0257 (7)−0.0002 (6)0.0132 (6)−0.0002 (6)
N20.0236 (7)0.0236 (7)0.0268 (7)0.0003 (6)0.0120 (6)−0.0008 (6)
C20.0418 (11)0.0340 (10)0.0274 (9)−0.0021 (9)0.0167 (9)−0.0068 (8)
C60.0268 (9)0.0398 (11)0.0372 (10)−0.0050 (8)0.0170 (8)0.0041 (9)
C70.0250 (8)0.0324 (9)0.0285 (9)0.0016 (7)0.0134 (8)0.0045 (7)
C90.0417 (11)0.0384 (11)0.0291 (9)0.0038 (9)0.0205 (9)−0.0027 (8)
C50.0251 (9)0.0339 (10)0.0342 (10)−0.0075 (8)0.0099 (8)−0.0005 (8)
C40.0251 (8)0.0243 (8)0.0262 (8)−0.0013 (7)0.0086 (7)0.0017 (7)
C100.0307 (9)0.0288 (9)0.0279 (9)0.0002 (7)0.0129 (8)−0.0044 (7)
C80.0343 (10)0.0455 (12)0.0333 (10)0.0005 (9)0.0221 (9)0.0024 (9)
C10.0343 (10)0.0290 (9)0.0304 (9)−0.0015 (8)0.0186 (8)−0.0019 (7)
C110.0216 (8)0.0223 (8)0.0238 (8)0.0016 (6)0.0092 (7)0.0024 (7)
C30.0321 (10)0.0280 (9)0.0276 (9)−0.0054 (7)0.0089 (8)−0.0050 (7)
C120.0222 (8)0.0202 (8)0.0243 (8)0.0004 (6)0.0100 (7)0.0023 (6)
C140.077 (2)0.081 (2)0.080 (2)0.0248 (19)0.0404 (19)0.0057 (19)
C130.091 (3)0.0280 (15)0.070 (2)0.0000.051 (2)0.000
O30.1204 (19)0.0423 (10)0.0973 (16)0.0019 (10)0.0895 (16)−0.0033 (10)

Geometric parameters (Å, °)

Ni1—N2i2.0775 (16)C7—C111.402 (3)
Ni1—N22.0775 (16)C7—C81.406 (3)
Ni1—N12.0802 (16)C9—C81.362 (3)
Ni1—N1i2.0802 (16)C9—C101.396 (3)
Ni1—O1i2.1127 (14)C9—H9A0.9300
Ni1—O12.1127 (14)C5—C41.431 (3)
Ni1—S12.6758 (9)C5—H5A0.9300
S1—O2i1.4559 (14)C4—C121.408 (2)
S1—O21.4559 (14)C4—C31.410 (3)
S1—O11.4950 (14)C10—H10A0.9300
S1—O1i1.4950 (14)C8—H8A0.9300
N1—C11.332 (2)C1—H1A0.9300
N1—C121.358 (2)C11—C121.436 (2)
N2—C101.332 (2)C3—H3A0.9300
N2—C111.359 (2)C14—O31.384 (4)
C2—C31.362 (3)C14—C131.505 (4)
C2—C11.403 (3)C14—H14A0.9700
C2—H2A0.9300C14—H14B0.9700
C6—C51.353 (3)C13—C14i1.505 (4)
C6—C71.433 (3)C13—H130.9659
C6—H6A0.9300O3—H30.8200
N2i—Ni1—N2170.54 (8)C5—C6—H6A119.7
N2i—Ni1—N193.90 (6)C7—C6—H6A119.7
N2—Ni1—N180.05 (6)C11—C7—C8116.97 (17)
N2i—Ni1—N1i80.05 (6)C11—C7—C6119.45 (18)
N2—Ni1—N1i93.90 (6)C8—C7—C6123.55 (18)
N1—Ni1—N1i101.07 (9)C8—C9—C10119.43 (18)
N2i—Ni1—O1i95.71 (6)C8—C9—H9A120.3
N2—Ni1—O1i92.14 (6)C10—C9—H9A120.3
N1—Ni1—O1i161.48 (5)C6—C5—C4121.57 (18)
N1i—Ni1—O1i96.16 (6)C6—C5—H5A119.2
N2i—Ni1—O192.14 (6)C4—C5—H5A119.2
N2—Ni1—O195.71 (6)C12—C4—C3117.17 (17)
N1—Ni1—O196.16 (6)C12—C4—C5118.88 (17)
N1i—Ni1—O1161.48 (5)C3—C4—C5123.95 (17)
O1i—Ni1—O167.73 (7)N2—C10—C9122.67 (18)
N2i—Ni1—S194.73 (4)N2—C10—H10A118.7
N2—Ni1—S194.73 (4)C9—C10—H10A118.7
N1—Ni1—S1129.47 (4)C9—C8—C7119.88 (18)
N1i—Ni1—S1129.47 (4)C9—C8—H8A120.1
O1i—Ni1—S133.86 (4)C7—C8—H8A120.1
O1—Ni1—S133.86 (4)N1—C1—C2122.82 (18)
O2i—S1—O2110.81 (14)N1—C1—H1A118.6
O2i—S1—O1110.68 (9)C2—C1—H1A118.6
O2—S1—O1110.29 (8)N2—C11—C7123.16 (16)
O2i—S1—O1i110.29 (8)N2—C11—C12117.02 (15)
O2—S1—O1i110.68 (9)C7—C11—C12119.80 (16)
O1—S1—O1i103.90 (11)C2—C3—C4119.49 (18)
O2i—S1—Ni1124.60 (7)C2—C3—H3A120.3
O2—S1—Ni1124.60 (7)C4—C3—H3A120.3
O1—S1—Ni151.95 (5)N1—C12—C4123.17 (17)
O1i—S1—Ni151.95 (5)N1—C12—C11117.15 (15)
S1—O1—Ni194.19 (7)C4—C12—C11119.66 (16)
C1—N1—C12117.76 (16)O3—C14—C13112.9 (3)
C1—N1—Ni1129.29 (13)O3—C14—H14A109.0
C12—N1—Ni1112.78 (12)C13—C14—H14A109.0
C10—N2—C11117.89 (16)O3—C14—H14B109.0
C10—N2—Ni1129.14 (13)C13—C14—H14B109.0
C11—N2—Ni1112.88 (12)H14A—C14—H14B107.8
C3—C2—C1119.57 (18)C14—C13—C14i111.4 (3)
C3—C2—H2A120.2C14—O3—H3109.5
C1—C2—H2A120.2C14—O3—H1351.3
C5—C6—C7120.55 (18)H3—O3—H13134.4
N2i—Ni1—S1—O2i−3.49 (9)O1—Ni1—N2—C10−85.94 (16)
N2—Ni1—S1—O2i176.51 (9)S1—Ni1—N2—C10−51.94 (16)
N1—Ni1—S1—O2i−102.49 (10)N1—Ni1—N2—C112.48 (12)
N1i—Ni1—S1—O2i77.51 (10)N1i—Ni1—N2—C11−98.09 (12)
O1i—Ni1—S1—O2i89.72 (10)O1i—Ni1—N2—C11165.58 (12)
O1—Ni1—S1—O2i−90.28 (10)O1—Ni1—N2—C1197.75 (12)
N2i—Ni1—S1—O2176.51 (9)S1—Ni1—N2—C11131.75 (11)
N2—Ni1—S1—O2−3.49 (9)C5—C6—C7—C11−1.5 (3)
N1—Ni1—S1—O277.51 (10)C5—C6—C7—C8176.34 (19)
N1i—Ni1—S1—O2−102.49 (10)C7—C6—C5—C42.1 (3)
O1i—Ni1—S1—O2−90.28 (10)C6—C5—C4—C120.0 (3)
O1—Ni1—S1—O289.72 (10)C6—C5—C4—C3−179.52 (19)
N2i—Ni1—S1—O186.79 (8)C11—N2—C10—C9−0.7 (3)
N2—Ni1—S1—O1−93.21 (8)Ni1—N2—C10—C9−176.81 (14)
N1—Ni1—S1—O1−12.21 (8)C8—C9—C10—N20.0 (3)
N1i—Ni1—S1—O1167.79 (8)C10—C9—C8—C70.1 (3)
O1i—Ni1—S1—O1180.0C11—C7—C8—C90.3 (3)
N2i—Ni1—S1—O1i−93.21 (8)C6—C7—C8—C9−177.63 (19)
N2—Ni1—S1—O1i86.79 (8)C12—N1—C1—C2−0.6 (3)
N1—Ni1—S1—O1i167.79 (8)Ni1—N1—C1—C2−175.62 (14)
N1i—Ni1—S1—O1i−12.21 (8)C3—C2—C1—N1−0.1 (3)
O1—Ni1—S1—O1i180.0C10—N2—C11—C71.2 (3)
O2i—S1—O1—Ni1118.37 (8)Ni1—N2—C11—C7177.92 (13)
O2—S1—O1—Ni1−118.64 (8)C10—N2—C11—C12179.30 (15)
O1i—S1—O1—Ni10.0Ni1—N2—C11—C12−3.94 (19)
N2i—Ni1—O1—S1−95.30 (7)C8—C7—C11—N2−1.0 (3)
N2—Ni1—O1—S189.97 (7)C6—C7—C11—N2177.04 (17)
N1—Ni1—O1—S1170.54 (6)C8—C7—C11—C12−179.08 (16)
N1i—Ni1—O1—S1−31.0 (2)C6—C7—C11—C12−1.1 (3)
O1i—Ni1—O1—S10.0C1—C2—C3—C40.0 (3)
N2i—Ni1—N1—C1−12.76 (16)C12—C4—C3—C20.8 (3)
N2—Ni1—N1—C1174.57 (17)C5—C4—C3—C2−179.67 (19)
N1i—Ni1—N1—C1−93.37 (16)C1—N1—C12—C41.5 (3)
O1i—Ni1—N1—C1108.4 (2)Ni1—N1—C12—C4177.32 (13)
O1—Ni1—N1—C179.82 (16)C1—N1—C12—C11−177.07 (16)
S1—Ni1—N1—C186.63 (16)Ni1—N1—C12—C11−1.27 (18)
N2i—Ni1—N1—C12172.05 (12)C3—C4—C12—N1−1.6 (3)
N2—Ni1—N1—C12−0.63 (11)C5—C4—C12—N1178.81 (16)
N1i—Ni1—N1—C1291.44 (12)C3—C4—C12—C11176.96 (16)
O1i—Ni1—N1—C12−66.8 (2)C5—C4—C12—C11−2.6 (2)
O1—Ni1—N1—C12−95.37 (12)N2—C11—C12—N13.6 (2)
S1—Ni1—N1—C12−88.56 (12)C7—C11—C12—N1−178.23 (15)
N1—Ni1—N2—C10178.78 (17)N2—C11—C12—C4−175.08 (15)
N1i—Ni1—N2—C1078.21 (16)C7—C11—C12—C43.1 (2)
O1i—Ni1—N2—C10−18.11 (16)O3—C14—C13—C14i65.6 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.922.743 (2)179

Symmetry codes: i.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2347).

References

  • Blake, A. J., Lippolis, V., Pivetta, T. & Verani, G. (2007). Acta Cryst. C63, m364–m367. [PubMed]
  • Cui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564. [PMC free article] [PubMed]
  • Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, H.-Y., Gao, S., Huo, L.-H. & Zhao, J.-G. (2007). Acta Cryst. E63, m7–m8.
  • Zhang, Y.-S., Enright, G. D., Breeze, S. R. & Wang, S. (1999). New J. Chem.23, 625–628.
  • Zhong, K.-L. (2010). Acta Cryst. E66, m247. [PMC free article] [PubMed]
  • Zhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography