PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m776.
Published online 2010 June 16. doi:  10.1107/S1600536810021550
PMCID: PMC3006804

{N,N′-Bis[1-(2-pyrid­yl)ethyl­idene]ethane-1,2-diamine-κ4 N,N′,N′′,N′′′}bis­(thio­cyanato-κN)manganese(II)

Abstract

The mol­ecule of the title compound, [Mn(NCS)2(C16H18N4)], has crystallographic twofold rotation symmetry, with the MnII atom lying on the rotation axis. The MnII atom is six-coordinated by four N atoms of the Schiff base ligand and by two N atoms of two thio­cyanate ligands, forming a distorted octa­hedral geometry.

Related literature

For background to Schiff base compounds, see: Ruck & Jacobsen (2002 [triangle]); Mukhopadhyay et al. (2003 [triangle]); Polt et al. (2003 [triangle]); Mukherjee et al. (2001 [triangle]). For complexes derived from N,N′-bis­(1-(pyridin-2-yl)ethyl­idene)ethane-1,2-diamine, see: Gourbatsis et al. (1998 [triangle]); Louloudi et al. (1999 [triangle]); Karmakar et al. (2002 [triangle]); Banerjee et al. (2004 [triangle]). For related MnII complexes with Schiff bases, see: Louloudi et al. (1999 [triangle]); Sra et al. (2000 [triangle]); Karmakar et al. (2005 [triangle]); Deoghoria et al. (2005 [triangle]). For the synthesis of the Schiff base, see: Gourbatsis et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m776-scheme1.jpg

Experimental

Crystal data

  • [Mn(NCS)2(C16H18N4)]
  • M r = 437.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m776-efi1.jpg
  • a = 12.570 (4) Å
  • b = 16.341 (5) Å
  • c = 9.962 (3) Å
  • β = 90.857 (4)°
  • V = 2045.9 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.86 mm−1
  • T = 298 K
  • 0.17 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.867, T max = 0.881
  • 4479 measured reflections
  • 2173 independent reflections
  • 1590 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.093
  • S = 1.02
  • 2173 reflections
  • 124 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021550/ci5097sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021550/ci5097Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Dezhou University, People’s Republic of China.

supplementary crystallographic information

Comment

Metal complexes with Schiff bases have been known since 1840. The Schiff bases and their complexes have played an important role in the development of coordination chemistry, biological and material sciences (Ruck & Jacobsen, 2002; Mukhopadhyay et al., 2003; Polt et al., 2003; Mukherjee et al., 2001). A few complexes derived from N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine have been reported (Gourbatsis et al., 1998; Louloudi et al., 1999; Karmakar et al., 2002; Banerjee et al., 2004). In this paper, the title new Mn(II) complex is reported.

The title compound possesses a crystallographic twofold rotation axis symmetry, Fig. 1. The MnII atom is six-coordinated by four N atoms of the Schiff base ligand N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine, and by two N atoms from two thiocyanate ligands, forming a distorted octahedral geometry. The coordinate bond lengths (Table 1) are comparable with those observed in other similar manganese(II) complexes with Schiff bases (Louloudi et al., 1999; Sra et al., 2000; Karmakar et al., 2005; Deoghoria et al., 2005).

Experimental

The Schiff base ligand N,N'-bis(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine was synthesized according to the literature method (Gourbatsis et al., 1990). To a stirred methanol solution of the Schiff base ligand (1.0 mmol, 0.266 g) was added a methanol solution of manganese acetate (1.0 mmol, 0.245 g) and ammonium thiocyanate (1.0 mmol, 0.076 g). The mixture was boiled under reflux for 2 h, then cooled to room temperature. Brown block-like single crystals, suitable for X-ray diffraction, were formed after slow evaporation of the solution in air for a few days.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 - x, y, 1/2 - z).

Crystal data

[Mn(NCS)2(C16H18N4)]F(000) = 900
Mr = 437.44Dx = 1.420 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1222 reflections
a = 12.570 (4) Åθ = 2.6–25.3°
b = 16.341 (5) ŵ = 0.86 mm1
c = 9.962 (3) ÅT = 298 K
β = 90.857 (4)°Block, brown
V = 2045.9 (10) Å30.17 × 0.15 × 0.15 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2173 independent reflections
Radiation source: fine-focus sealed tube1590 reflections with I > 2σ(I)
graphiteRint = 0.023
ω scanθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −16→12
Tmin = 0.867, Tmax = 0.881k = −20→20
4479 measured reflectionsl = −12→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0354P)2 + 1.1621P] where P = (Fo2 + 2Fc2)/3
2173 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.50000.28864 (3)0.25000.04525 (18)
N10.42596 (16)0.32743 (14)0.03855 (19)0.0533 (5)
N20.44344 (15)0.17790 (12)0.13277 (18)0.0471 (5)
N30.63772 (18)0.34541 (15)0.1706 (2)0.0648 (6)
S10.82249 (6)0.38624 (6)0.04009 (8)0.0872 (3)
C10.4168 (2)0.40396 (19)−0.0058 (3)0.0700 (8)
H10.43540.44630.05230.084*
C20.3812 (2)0.4238 (2)−0.1337 (3)0.0770 (9)
H20.37500.4781−0.16050.092*
C30.3554 (2)0.3616 (2)−0.2193 (3)0.0774 (9)
H30.33250.3729−0.30650.093*
C40.3636 (2)0.28185 (19)−0.1753 (3)0.0658 (8)
H40.34550.2388−0.23230.079*
C50.39910 (18)0.26645 (16)−0.0454 (2)0.0492 (6)
C60.40708 (18)0.18264 (16)0.0130 (2)0.0482 (6)
C70.3715 (2)0.11213 (18)−0.0729 (3)0.0731 (8)
H7A0.42270.1028−0.14180.110*
H7B0.30360.1246−0.11340.110*
H7C0.36540.0639−0.01840.110*
C80.4512 (2)0.10020 (15)0.2047 (2)0.0563 (7)
H8A0.45560.05550.14100.068*
H8B0.38810.09220.25800.068*
C90.7137 (2)0.36210 (16)0.1152 (2)0.0515 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0431 (3)0.0515 (3)0.0411 (3)0.0000.0002 (2)0.000
N10.0524 (12)0.0574 (14)0.0500 (12)0.0008 (10)−0.0029 (9)0.0033 (10)
N20.0468 (11)0.0525 (13)0.0418 (11)0.0001 (9)−0.0008 (9)−0.0012 (9)
N30.0507 (13)0.0863 (17)0.0575 (13)−0.0072 (12)0.0016 (10)0.0114 (12)
S10.0612 (5)0.1388 (9)0.0619 (5)−0.0238 (5)0.0102 (4)0.0159 (5)
C10.081 (2)0.0640 (19)0.0650 (17)0.0042 (16)−0.0056 (15)0.0044 (15)
C20.080 (2)0.078 (2)0.0727 (19)0.0090 (17)−0.0060 (17)0.0206 (17)
C30.069 (2)0.104 (3)0.0589 (17)−0.0006 (18)−0.0151 (15)0.0212 (18)
C40.0610 (17)0.084 (2)0.0523 (15)−0.0075 (15)−0.0149 (12)0.0052 (15)
C50.0352 (12)0.0679 (17)0.0444 (13)−0.0030 (11)−0.0011 (10)0.0014 (12)
C60.0387 (13)0.0629 (16)0.0430 (13)−0.0037 (11)0.0018 (10)−0.0049 (11)
C70.086 (2)0.077 (2)0.0553 (16)−0.0141 (17)−0.0139 (15)−0.0073 (14)
C80.0657 (17)0.0558 (16)0.0475 (14)−0.0064 (13)−0.0019 (11)0.0004 (11)
C90.0520 (15)0.0619 (17)0.0405 (12)−0.0004 (13)−0.0061 (11)0.0071 (11)

Geometric parameters (Å, °)

Mn1—N32.127 (2)C2—C31.363 (4)
Mn1—N3i2.127 (2)C2—H20.93
Mn1—N22.263 (2)C3—C41.378 (4)
Mn1—N2i2.263 (2)C3—H30.93
Mn1—N1i2.376 (2)C4—C51.386 (3)
Mn1—N12.376 (2)C4—H40.93
N1—C11.331 (3)C5—C61.491 (4)
N1—C51.341 (3)C6—C71.500 (3)
N2—C61.273 (3)C7—H7A0.96
N2—C81.461 (3)C7—H7B0.96
N3—C91.144 (3)C7—H7C0.96
S1—C91.617 (3)C8—C8i1.512 (5)
C1—C21.382 (4)C8—H8A0.97
C1—H10.93C8—H8B0.97
N3—Mn1—N3i128.28 (13)C1—C2—H2120.9
N3—Mn1—N2114.09 (8)C2—C3—C4119.4 (3)
N3i—Mn1—N2106.83 (8)C2—C3—H3120.3
N3—Mn1—N2i106.83 (8)C4—C3—H3120.3
N3i—Mn1—N2i114.09 (8)C3—C4—C5119.3 (3)
N2—Mn1—N2i73.78 (10)C3—C4—H4120.3
N3—Mn1—N1i84.43 (8)C5—C4—H4120.3
N3i—Mn1—N1i82.20 (8)N1—C5—C4121.5 (2)
N2—Mn1—N1i141.89 (7)N1—C5—C6115.1 (2)
N2i—Mn1—N1i68.89 (7)C4—C5—C6123.4 (2)
N3—Mn1—N182.20 (8)N2—C6—C5116.3 (2)
N3i—Mn1—N184.43 (8)N2—C6—C7126.0 (2)
N2—Mn1—N168.89 (7)C5—C6—C7117.7 (2)
N2i—Mn1—N1141.89 (7)C6—C7—H7A109.5
N1i—Mn1—N1149.06 (11)C6—C7—H7B109.5
C1—N1—C5118.1 (2)H7A—C7—H7B109.5
C1—N1—Mn1125.15 (18)C6—C7—H7C109.5
C5—N1—Mn1116.51 (16)H7A—C7—H7C109.5
C6—N2—C8122.2 (2)H7B—C7—H7C109.5
C6—N2—Mn1122.72 (17)N2—C8—C8i109.89 (15)
C8—N2—Mn1115.07 (14)N2—C8—H8A109.7
C9—N3—Mn1166.9 (2)C8i—C8—H8A109.7
N1—C1—C2123.5 (3)N2—C8—H8B109.7
N1—C1—H1118.3C8i—C8—H8B109.7
C2—C1—H1118.3H8A—C8—H8B108.2
C3—C2—C1118.2 (3)N3—C9—S1178.7 (2)
C3—C2—H2120.9

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5097).

References

  • Banerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. & Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533–2541.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deoghoria, S., Bera, S. K., Moulton, B., Zaworotko, M. J., Tuchagues, J.-P., Mostafa, G., Lu, T.-H. & Chandra, S. K. (2005). Polyhedron, 24, 343–350.
  • Gourbatsis, S., Hadjiliadis, N., Perlepes, S. P., Garoufis, A. & Butler, I. S. (1998). Transition Met. Chem.23, 599–604.
  • Gourbatsis, S., Perlepes, S. P., Hadjiliadis, N. & Kalkanis, G. (1990). Transition Met. Chem.15, 300–308.
  • Karmakar, T. K., Chandra, S. K., Ribas, J., Mostafa, G., Lu, T. H. & Ghosh, B. K. (2002). Chem. Commun. pp. 2364–2365. [PubMed]
  • Karmakar, T. K., Ghosh, B. K., Usman, A., Fun, H.-K., Riviere, E., Mallah, T., Aromi, G. & Chandra, S. K. (2005). Inorg. Chem.44, 2391–2399. [PubMed]
  • Louloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun.2, 479–483.
  • Mukherjee, P. S., Dalai, S., Mostafa, G., Lu, T.-H., Rentschler, E. & Chaudhuri, N. R. (2001). New J. Chem.25, 1203–1207.
  • Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem.42, 8439–8445. [PubMed]
  • Polt, R., Kelly, B. D., Dangel, B. D., Tadikonda, U. B., Ross, R. E., Raitsimring, A. M. & Astashkin, A. V. (2003). Inorg. Chem.42, 566–574. [PubMed]
  • Ruck, R. T. & Jacobsen, E. N. (2002). J. Am. Chem. Soc.124, 2882–2883. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sra, A. K., Sutter, J.-P., Guionneau, P., Chasseau, D., Yakhmi, J. V. & Kahn, O. (2000). Inorg. Chim. Acta, 300, 778–782.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography