PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1542.
Published online 2010 June 5. doi:  10.1107/S1600536810020489
PMCID: PMC3006799

(2-Chloro-8-meth­oxy­quinolin-3-yl)methanol monohydrate

Abstract

In the title compound, C11H10ClNO2·H2O, the organic mol­ecule is roughly planar (r.m.s. deviation = 0.074 Å). In the crystal structure, molecues are linked by O—H(...)O and O—H(...)N hydrogen bonds and weak C—H(...)π and π–π inter­actions [centroid–centroid distance = 3.578 (3) Å] consolidate the packing. A short Cl(...)O contact [3.147 (3) Å] is also observed.

Related literature

For further information on the starting material, see: Subashini et al. (2009 [triangle]). For general background to the title compound, see: Roopan et al. (2009 [triangle]). For related structures, see: Khan et al. (2010a [triangle],b [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1542-scheme1.jpg

Experimental

Crystal data

  • C11H10ClNO2·H2O
  • M r = 241.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1542-efi1.jpg
  • a = 9.161 (5) Å
  • b = 14.246 (5) Å
  • c = 9.464 (5) Å
  • β = 116.819 (5)°
  • V = 1102.3 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 290 K
  • 0.31 × 0.21 × 0.10 mm

Data collection

  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009 [triangle]) T min = 0.903, T max = 0.967
  • 8360 measured reflections
  • 2044 independent reflections
  • 1212 reflections with I > 2σ(I)
  • R int = 0.100

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.134
  • S = 0.90
  • 2044 reflections
  • 153 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020489/hb5469sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020489/hb5469Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

The importance and general background of the title compound is given in our earler paper (Roopan et al., 2009).

In the main molecule of the title compound (I), (Fig. 1), all the non-H atoms are roughly coplanar (r.m.s. deviation = 0.074 Å). The bond lengths and angles are comparable to the similar structures 2-chloro-3-hydroxymethyl-7,8-dimethylquinoline and 2-chloro-3-hydroxymethyl-6-methoxyquinoline (Khan et al., 2010a,b), and also those in literature (Allen et al., 1987).

The crystal structure is stabilized by intermolecular O—H···O and O—H···N interactions between the symmetry-related molecues (Table 1, Fig. 2). Adjacent molecules are stacked along the b axis through weak C—H···π interactions (Table 1) and π-π interactions [Cg1···Cg2(-x, 1 - y, -z) = 3.578 (3) Å, where Cg1 and Cg2 are centroids of the N1/C1–C3/C8/C9 and C4–C9 rings, respectively]. In addition a short Cl1.. O2 contact of 3.15 Å is also observed.

Experimental

2-Chloro-8-methoxyquinoline-3-carbaldehyde (222 mg, 1 mmol), sodium borohydride (38 mg, 1 mmol) and catalytic amount of montmorillonite K-10 were taken in an open vessel and the resulting mixture was irradiated at 500 W for 5 min. Ethylacetate was poured into the reaction mixture and filtered off. The filtrated after removal of solvent was subjected to column chromatography packed with silica and ethyl acetate/petroleum ether was used as the eluant. Colourless slabs of (I) were grown by solvent evaporation from a solution of the compound in chloroform.

Refinement

The H atoms of the water molecule were located in difference map and its positional parameters were refined freely [O3—H1W = 0.85 (5) and O3—H2W = 0.83 (4) Å]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and refined as riding with Uiso(H) = 1.2 or 1.5 Ueq(O, C).

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines. The H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C11H10ClNO2·H2OF(000) = 504
Mr = 241.67Dx = 1.456 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1021 reflections
a = 9.161 (5) Åθ = 1.9–20.2°
b = 14.246 (5) ŵ = 0.34 mm1
c = 9.464 (5) ÅT = 290 K
β = 116.819 (5)°Slab, colourless
V = 1102.3 (9) Å30.31 × 0.21 × 0.10 mm
Z = 4

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer2044 independent reflections
Radiation source: Enhance (Mo) X-ray Source1212 reflections with I > 2σ(I)
graphiteRint = 0.100
ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −11→11
Tmin = 0.903, Tmax = 0.967k = −17→17
8360 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.90w = 1/[σ2(Fo2) + (0.0692P)2] where P = (Fo2 + 2Fc2)/3
2044 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.12994 (10)0.21700 (5)−0.05478 (9)0.0525 (3)
O10.0858 (3)0.2656 (2)−0.3822 (3)0.0713 (10)
O20.1487 (3)0.46372 (14)0.3536 (2)0.0515 (8)
N10.0521 (3)0.35801 (15)0.0948 (3)0.0371 (8)
C10.0114 (4)0.30580 (19)−0.0297 (3)0.0399 (10)
C20.0664 (4)0.3140 (2)−0.1453 (3)0.0435 (10)
C30.1715 (4)0.3870 (2)−0.1243 (3)0.0493 (11)
C40.3261 (4)0.5254 (2)0.0313 (4)0.0558 (12)
C50.3720 (4)0.5792 (2)0.1620 (5)0.0603 (14)
C60.3158 (4)0.5601 (2)0.2743 (4)0.0545 (12)
C70.2105 (4)0.4875 (2)0.2525 (3)0.0436 (10)
C80.1595 (3)0.43029 (18)0.1160 (3)0.0379 (9)
C90.2198 (4)0.4484 (2)0.0056 (3)0.0444 (11)
C100.0147 (4)0.2459 (3)−0.2813 (4)0.0573 (11)
C110.2035 (5)0.5135 (3)0.4973 (4)0.0678 (16)
O30.8868 (3)0.3074 (2)0.2937 (3)0.0716 (10)
H1O0.181200.24780−0.340700.1070*
H30.211800.39630−0.197500.0590*
H40.364700.53900−0.042000.0670*
H50.441900.629700.177600.0730*
H60.350700.597200.364600.0660*
H10A0.045100.18290−0.239500.0690*
H10B−0.103400.24780−0.342100.0690*
H11A0.320500.509000.554600.1020*
H11B0.155200.487000.559600.1020*
H11C0.172300.578200.475500.1020*
H1W0.943 (5)0.331 (3)0.252 (5)0.1080*
H2W0.949 (6)0.301 (3)0.389 (5)0.1080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0537 (5)0.0487 (5)0.0489 (5)−0.0099 (4)0.0176 (4)−0.0054 (4)
O10.0644 (17)0.112 (2)0.0369 (13)0.0262 (15)0.0223 (13)0.0030 (12)
O20.0555 (15)0.0550 (14)0.0428 (12)−0.0026 (11)0.0212 (11)−0.0056 (10)
N10.0369 (14)0.0372 (14)0.0321 (13)0.0029 (11)0.0112 (11)0.0046 (11)
C10.0379 (17)0.0400 (17)0.0342 (17)0.0072 (14)0.0096 (14)0.0066 (13)
C20.0369 (17)0.054 (2)0.0324 (17)0.0087 (15)0.0094 (14)0.0063 (13)
C30.047 (2)0.067 (2)0.0379 (18)0.0167 (18)0.0228 (16)0.0161 (16)
C40.042 (2)0.056 (2)0.072 (2)0.0051 (17)0.0280 (18)0.0169 (19)
C50.043 (2)0.040 (2)0.090 (3)−0.0063 (16)0.023 (2)0.0051 (19)
C60.047 (2)0.044 (2)0.061 (2)−0.0025 (16)0.0141 (18)−0.0045 (16)
C70.0358 (17)0.0434 (18)0.0448 (19)0.0081 (15)0.0122 (15)0.0033 (14)
C80.0317 (16)0.0343 (16)0.0396 (16)0.0055 (14)0.0089 (14)0.0054 (13)
C90.0380 (18)0.0480 (19)0.0458 (19)0.0053 (15)0.0176 (16)0.0110 (15)
C100.056 (2)0.076 (2)0.0358 (19)0.0121 (18)0.0170 (17)−0.0025 (16)
C110.071 (3)0.078 (3)0.046 (2)0.000 (2)0.019 (2)−0.0121 (17)
O30.0575 (17)0.108 (2)0.0480 (15)−0.0196 (15)0.0226 (13)0.0007 (15)

Geometric parameters (Å, °)

Cl1—C11.748 (4)C4—C91.413 (5)
O1—C101.406 (5)C5—C61.401 (6)
O2—C71.356 (4)C6—C71.365 (5)
O2—C111.410 (4)C7—C81.417 (4)
O1—H1O0.8200C8—C91.409 (4)
O3—H1W0.85 (5)C3—H30.9300
O3—H2W0.83 (4)C4—H40.9300
N1—C11.298 (4)C5—H50.9300
N1—C81.375 (4)C6—H60.9300
C1—C21.401 (5)C10—H10B0.9700
C2—C31.369 (5)C10—H10A0.9700
C2—C101.507 (5)C11—H11C0.9600
C3—C91.408 (4)C11—H11A0.9600
C4—C51.351 (5)C11—H11B0.9600
Cl1···O2i3.147 (3)
C7—O2—C11118.3 (3)C3—C9—C8117.4 (3)
C10—O1—H1O109.00O1—C10—C2112.8 (3)
H1W—O3—H2W107 (5)C2—C3—H3119.00
C1—N1—C8117.1 (3)C9—C3—H3119.00
Cl1—C1—N1115.5 (3)C5—C4—H4120.00
Cl1—C1—C2117.4 (2)C9—C4—H4120.00
N1—C1—C2127.2 (3)C6—C5—H5120.00
C1—C2—C10121.9 (3)C4—C5—H5119.00
C1—C2—C3115.3 (3)C7—C6—H6120.00
C3—C2—C10122.8 (3)C5—C6—H6120.00
C2—C3—C9121.5 (3)O1—C10—H10A109.00
C5—C4—C9120.2 (3)C2—C10—H10A109.00
C4—C5—C6121.0 (3)C2—C10—H10B109.00
C5—C6—C7120.6 (3)O1—C10—H10B109.00
O2—C7—C8115.4 (3)H10A—C10—H10B108.00
C6—C7—C8119.6 (3)O2—C11—H11B109.00
O2—C7—C6125.0 (3)O2—C11—H11C110.00
N1—C8—C9121.6 (2)O2—C11—H11A109.00
N1—C8—C7118.9 (3)H11A—C11—H11C109.00
C7—C8—C9119.5 (3)H11B—C11—H11C110.00
C3—C9—C4123.6 (3)H11A—C11—H11B109.00
C4—C9—C8119.0 (3)
C11—O2—C7—C6−4.0 (5)C2—C3—C9—C81.8 (5)
C11—O2—C7—C8175.5 (3)C9—C4—C5—C60.0 (6)
C8—N1—C1—Cl1−178.2 (2)C5—C4—C9—C3−177.5 (3)
C8—N1—C1—C20.8 (5)C5—C4—C9—C81.6 (5)
C1—N1—C8—C7−178.4 (3)C4—C5—C6—C7−1.3 (6)
C1—N1—C8—C91.5 (4)C5—C6—C7—O2−179.7 (3)
Cl1—C1—C2—C3177.3 (2)C5—C6—C7—C80.9 (5)
Cl1—C1—C2—C10−3.6 (4)O2—C7—C8—N11.1 (4)
N1—C1—C2—C3−1.7 (5)O2—C7—C8—C9−178.8 (3)
N1—C1—C2—C10177.4 (3)C6—C7—C8—N1−179.3 (3)
C1—C2—C3—C90.3 (5)C6—C7—C8—C90.8 (5)
C10—C2—C3—C9−178.8 (3)N1—C8—C9—C3−2.7 (4)
C1—C2—C10—O1−179.0 (3)N1—C8—C9—C4178.1 (3)
C3—C2—C10—O10.1 (5)C7—C8—C9—C3177.1 (3)
C2—C3—C9—C4−179.1 (3)C7—C8—C9—C4−2.0 (4)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C3/C8/C9 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i0.821.902.705 (4)165
O3—H1W···N1ii0.85 (5)2.17 (5)2.988 (4)163 (4)
O3—H2W···O1iii0.83 (4)2.02 (4)2.836 (4)171 (5)
C10—H10B···Cg1i0.972.933.738 (5)142

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1, y, z; (iii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5469).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200. [PMC free article] [PubMed]
  • Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton,England.
  • Roopan, S. M., Khan, F. N., Subashini, R., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2711. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Subashini, R., Khan, F. N., Gund, M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2723. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography