PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1540–o1541.
Published online 2010 June 5. doi:  10.1107/S1600536810020271
PMCID: PMC3006797

16-[(E)-Benzyl­idene]-13-hy­droxy-4-methyl-2-phenyl-4,14-diaza­penta­cyclo-[12.3.1.01,5.05,13.07,12]octa­deca-7(12),8,10-triene-6,17-dione

Abstract

In the title compound, C30H26N2O3, the two pyrrolidine rings adopt twisted and envelope conformations, whereas the cyclo­pentane ring adopts an envelope conformation. The least-squares planes through the pyrrolidine rings form a dihedral angle of 41.72 (10)°. The mol­ecular structure is stabilized by an intra­molecular O—H(...)N hydrogen bond, which generates an S(5) ring motif. Centrosymmetrically related mol­ecules are linked via two pairs of inter­molecular C—H(...)O inter­actions, forming R 2 2(16) ring motifs. In the crystal packing, the mol­ecules are linked into two-dimensional networks parallel to the ab plane via C—H(...)O inter­actions.

Related literature

For general background to and the biological activity of pyrrolidine derivatives, see: Gothelf & Jørgensen (1998 [triangle]); Gu et al. (2004 [triangle]); Horri et al. (1986 [triangle]); Tsukamoto et al. (1989 [triangle]); Karpas et al. (1988 [triangle]). For the biological activity of heterocycles with piperidine sub-structures, see: El-Subbagh et al. (2000 [triangle]); Dimmock et al. (2001 [triangle]); Lee et al. (2001 [triangle]). For reference bond lengths, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1540-scheme1.jpg

Experimental

Crystal data

  • C30H26N2O3
  • M r = 462.53
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1540-efi1.jpg
  • a = 9.0333 (5) Å
  • b = 9.4222 (5) Å
  • c = 14.0290 (7) Å
  • α = 80.943 (2)°
  • β = 78.034 (1)°
  • γ = 80.578 (1)°
  • V = 1142.88 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.51 × 0.39 × 0.10 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.957, T max = 0.991
  • 21768 measured reflections
  • 4213 independent reflections
  • 3812 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.130
  • S = 1.06
  • 4213 reflections
  • 420 parameters
  • All H-atom parameters refined
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020271/rz2455sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020271/rz2455Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research grant (1001/PKIMIA/8111016). HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). RSK thanks USM for the award of post doctoral fellowship and CKQ also thanks USM for the award of USM Fellowship.

supplementary crystallographic information

Comment

The cycloaddition reaction of azomethine ylide 1,3-dipoles with olefinic dipolarophiles constitutes a straightforward approach to the synthesis of highly substituted pyrrolidine derivatives (Gothelf & Jørgensen, 1998). Pyrrolidine ring is present in many biologically active natural compounds and pharmaceuticals (Gu et al., 2004), and find utility in the treatment of diseases such as diabetes (Horri et al., 1986), cancer (Tsukamoto et al., 1989) and viral infections (Karpas et al., 1988). Heterocycles with piperidine sub-structures display important biological activities, such as cytotoxic (El-Subbagh et al., 2000) and anticancer (Dimmock et al., 2001) besides being useful as synthons in the construction of alkaloid natural products (Lee et al., 2001).

The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges. For the two pyrrolidine rings, N1/C11–C14 is twisted about the N1–C12 with the puckering parameters (Cremer & Pople, 1975) Q = 0.4589 (16) Å and [var phi] = 202.6 (2)° whereas the N2/C11/C13/C22/C23 ring adopts an envelope conformation with atom N2 deviating by 0.251 (1) Å from the mean plane through the remaining atoms (puckering parameters Q = 0.3814 (18) Å and [var phi] = 356.2 (3)°). The cyclopentane (C13–C15/C20/C21) ring adopts an envelope conformation with the flap at atom C13 (puckering parameters Q = 0.2688 (10) Å and [var phi] = 186.5 (10)°). The two pyrrolidine rings make a dihedral angle of 41.72 (10)° between their least-squares planes. The molecular structure is stabilized by intramolecular O2—H12O···N2 hydrogen bond which generates an S(5) ring motif (Bernstein et al., 1995).

Centrosymmetrically related molecules are linked via two pairs of intermolecular C26—H26A···O1 and C29—H29A···O2 interactions, forming R22 (16) ring motifs (Table 1). In the crystal packing (Fig. 2), the molecules are linked into two- dimensional networks parallel to the ab plane via C17—H17A···O1 interactions.

Experimental

A mixture of 3,5-bis[(E)-benzylidene]tetrahydro-4(1H)-pyridinone (0.100 g, 0.364 mmol), ninhydrin (0.065 g, 0.364 mmol) and sarcosine (0.032 g, 0.364 mmol) were dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to obtain the product which was recrystallised from ethyl acetate to give the title compound as yellow crystals.

Refinement

All H atoms were located in a difference Fourier map and refined freely. The highest residual electron density peak is located at 1.10 Å from H22A and the deepest hole is located at 0.65 Å from C22.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Intramolecular hydrogen interaction is shown as dashed line.
Fig. 2.
The crystal structure of the title compound viewed along the a axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C30H26N2O3Z = 2
Mr = 462.53F(000) = 488
Triclinic, P1Dx = 1.344 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0333 (5) ÅCell parameters from 9987 reflections
b = 9.4222 (5) Åθ = 2.8–35.8°
c = 14.0290 (7) ŵ = 0.09 mm1
α = 80.943 (2)°T = 100 K
β = 78.034 (1)°Plate, yellow
γ = 80.578 (1)°0.51 × 0.39 × 0.10 mm
V = 1142.88 (10) Å3

Data collection

Bruker APEXII DUO CCD area-detector diffractometer4213 independent reflections
Radiation source: fine-focus sealed tube3812 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −10→10
Tmin = 0.957, Tmax = 0.991k = −11→11
21768 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130All H-atom parameters refined
S = 1.06w = 1/[σ2(Fo2) + (0.0728P)2 + 0.7251P] where P = (Fo2 + 2Fc2)/3
4213 reflections(Δ/σ)max = 0.001
420 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.82023 (14)0.80718 (12)0.24270 (9)0.0260 (3)
O20.64023 (14)0.37335 (13)0.07491 (8)0.0233 (3)
O30.49620 (13)0.63815 (12)0.34310 (8)0.0233 (3)
N10.85499 (15)0.43423 (14)0.12050 (9)0.0178 (3)
N20.48231 (16)0.62423 (16)0.12640 (10)0.0245 (3)
C10.8502 (2)0.36212 (19)0.51299 (12)0.0239 (4)
C20.8939 (2)0.23665 (19)0.57195 (13)0.0277 (4)
C31.0315 (2)0.15119 (19)0.54275 (13)0.0260 (4)
C41.1253 (2)0.19167 (19)0.45416 (13)0.0253 (4)
C51.0797 (2)0.31676 (19)0.39408 (12)0.0242 (4)
C60.94117 (19)0.40277 (17)0.42240 (12)0.0208 (3)
C70.88836 (18)0.53511 (17)0.36091 (12)0.0205 (3)
C80.94062 (18)0.42773 (17)0.19982 (11)0.0185 (3)
C90.88818 (17)0.55001 (16)0.26407 (12)0.0184 (3)
C100.81293 (18)0.69051 (16)0.21854 (11)0.0186 (3)
C110.72678 (18)0.67304 (16)0.13952 (11)0.0184 (3)
C120.84420 (18)0.58165 (16)0.06730 (11)0.0190 (3)
C130.60692 (17)0.56650 (16)0.18033 (11)0.0171 (3)
C140.69153 (18)0.41489 (16)0.15331 (11)0.0181 (3)
C150.65722 (18)0.31123 (17)0.24635 (11)0.0187 (3)
C160.69109 (19)0.16143 (17)0.25931 (13)0.0229 (4)
C170.6500 (2)0.08829 (18)0.35298 (13)0.0260 (4)
C180.5782 (2)0.16322 (19)0.43228 (13)0.0263 (4)
C190.54172 (19)0.31276 (18)0.41913 (12)0.0229 (4)
C200.58088 (18)0.38532 (16)0.32502 (11)0.0182 (3)
C210.55375 (17)0.54298 (17)0.29254 (11)0.0174 (3)
C220.4708 (2)0.78239 (19)0.11858 (14)0.0287 (4)
C230.63604 (19)0.81395 (18)0.09578 (12)0.0215 (3)
C240.70024 (18)0.86012 (16)−0.01149 (12)0.0198 (3)
C250.8288 (2)0.93160 (19)−0.03534 (13)0.0259 (4)
C260.8949 (2)0.97029 (19)−0.13279 (14)0.0283 (4)
C270.8334 (2)0.93817 (18)−0.20774 (13)0.0275 (4)
C280.7038 (2)0.86923 (19)−0.18502 (13)0.0271 (4)
C290.6380 (2)0.83022 (17)−0.08779 (12)0.0231 (4)
C300.3337 (2)0.5723 (2)0.16840 (14)0.0283 (4)
H1A0.751 (2)0.424 (2)0.5344 (14)0.027 (5)*
H2A0.824 (3)0.207 (2)0.6373 (17)0.035 (6)*
H3A1.062 (3)0.062 (2)0.5834 (16)0.035 (6)*
H4A1.217 (3)0.135 (2)0.4338 (15)0.027 (5)*
H5A1.147 (2)0.344 (2)0.3286 (16)0.030 (5)*
H7A0.839 (2)0.624 (2)0.3991 (15)0.031 (5)*
H8A0.936 (2)0.335 (2)0.2384 (14)0.023 (5)*
H8B1.052 (2)0.431 (2)0.1686 (14)0.022 (5)*
H12A0.945 (2)0.616 (2)0.0488 (13)0.019 (4)*
H12B0.802 (2)0.5839 (19)0.0082 (14)0.017 (4)*
H16A0.742 (2)0.114 (2)0.2045 (14)0.019 (4)*
H17A0.674 (2)−0.016 (2)0.3623 (15)0.031 (5)*
H18A0.557 (2)0.110 (2)0.4966 (16)0.031 (5)*
H19A0.489 (2)0.366 (2)0.4725 (15)0.024 (5)*
H22A0.406 (3)0.812 (3)0.1827 (18)0.045 (6)*
H22B0.407 (2)0.828 (2)0.0667 (15)0.027 (5)*
H23A0.643 (2)0.891 (2)0.1339 (15)0.028 (5)*
H25A0.862 (2)0.959 (2)0.0191 (16)0.032 (5)*
H26A0.983 (3)1.023 (2)−0.1492 (15)0.033 (5)*
H27A0.879 (3)0.966 (2)−0.2779 (17)0.035 (6)*
H28A0.653 (3)0.851 (2)−0.2365 (17)0.041 (6)*
H29A0.549 (3)0.782 (2)−0.0749 (16)0.035 (5)*
H30A0.260 (2)0.616 (2)0.1267 (16)0.031 (5)*
H30B0.284 (2)0.607 (2)0.2355 (16)0.029 (5)*
H30C0.347 (2)0.457 (2)0.1750 (15)0.031 (5)*
H12O0.589 (3)0.446 (3)0.0529 (18)0.043 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0343 (7)0.0153 (6)0.0296 (6)−0.0057 (5)−0.0063 (5)−0.0034 (5)
O20.0284 (6)0.0247 (6)0.0191 (6)−0.0035 (5)−0.0075 (5)−0.0057 (5)
O30.0265 (6)0.0194 (6)0.0213 (6)−0.0018 (5)0.0029 (5)−0.0055 (5)
N10.0205 (7)0.0159 (6)0.0154 (6)−0.0033 (5)0.0004 (5)−0.0011 (5)
N20.0205 (7)0.0265 (7)0.0235 (7)0.0010 (6)−0.0038 (6)0.0006 (6)
C10.0257 (9)0.0246 (8)0.0222 (8)−0.0046 (7)−0.0046 (7)−0.0039 (7)
C20.0320 (9)0.0276 (9)0.0235 (9)−0.0087 (7)−0.0043 (7)0.0005 (7)
C30.0333 (10)0.0214 (8)0.0250 (9)−0.0047 (7)−0.0111 (7)0.0004 (7)
C40.0253 (9)0.0241 (8)0.0270 (9)−0.0007 (7)−0.0070 (7)−0.0052 (7)
C50.0256 (9)0.0252 (8)0.0224 (8)−0.0059 (7)−0.0038 (7)−0.0033 (7)
C60.0253 (8)0.0195 (8)0.0204 (8)−0.0073 (6)−0.0061 (6)−0.0038 (6)
C70.0221 (8)0.0176 (8)0.0233 (8)−0.0057 (6)−0.0049 (6)−0.0033 (6)
C80.0192 (8)0.0153 (7)0.0196 (8)−0.0025 (6)−0.0009 (6)−0.0015 (6)
C90.0179 (7)0.0153 (7)0.0226 (8)−0.0055 (6)−0.0027 (6)−0.0022 (6)
C100.0189 (8)0.0163 (7)0.0184 (7)−0.0054 (6)0.0031 (6)−0.0010 (6)
C110.0221 (8)0.0147 (7)0.0158 (7)−0.0039 (6)0.0011 (6)0.0014 (6)
C120.0211 (8)0.0160 (7)0.0176 (8)−0.0022 (6)0.0007 (6)−0.0006 (6)
C130.0191 (8)0.0154 (7)0.0154 (7)−0.0026 (6)−0.0014 (6)−0.0001 (6)
C140.0218 (8)0.0171 (7)0.0154 (7)−0.0030 (6)−0.0023 (6)−0.0033 (6)
C150.0191 (8)0.0174 (8)0.0202 (8)−0.0053 (6)−0.0039 (6)−0.0010 (6)
C160.0255 (8)0.0180 (8)0.0260 (9)−0.0049 (6)−0.0044 (7)−0.0035 (7)
C170.0298 (9)0.0154 (8)0.0321 (9)−0.0072 (7)−0.0064 (7)0.0036 (7)
C180.0321 (9)0.0231 (8)0.0224 (8)−0.0109 (7)−0.0041 (7)0.0071 (7)
C190.0259 (8)0.0237 (8)0.0188 (8)−0.0094 (7)−0.0009 (6)0.0002 (6)
C200.0201 (8)0.0169 (8)0.0182 (8)−0.0067 (6)−0.0029 (6)−0.0008 (6)
C210.0168 (7)0.0182 (8)0.0162 (7)−0.0049 (6)0.0007 (6)−0.0016 (6)
C220.0250 (9)0.0254 (9)0.0292 (9)0.0006 (7)0.0008 (7)0.0042 (7)
C230.0228 (8)0.0185 (8)0.0197 (8)−0.0003 (6)−0.0011 (6)0.0015 (6)
C240.0205 (8)0.0136 (7)0.0216 (8)0.0006 (6)−0.0017 (6)0.0033 (6)
C250.0234 (9)0.0254 (9)0.0283 (9)−0.0049 (7)−0.0070 (7)0.0031 (7)
C260.0214 (9)0.0253 (9)0.0331 (10)−0.0051 (7)0.0010 (7)0.0053 (7)
C270.0308 (9)0.0203 (8)0.0236 (9)0.0016 (7)0.0034 (7)0.0048 (7)
C280.0335 (10)0.0222 (8)0.0241 (9)0.0000 (7)−0.0051 (7)−0.0025 (7)
C290.0253 (9)0.0156 (7)0.0271 (9)−0.0045 (6)−0.0029 (7)−0.0002 (6)
C300.0240 (9)0.0318 (10)0.0275 (9)−0.0061 (7)−0.0032 (7)0.0012 (7)

Geometric parameters (Å, °)

O1—C101.2158 (19)C13—C211.539 (2)
O2—C141.4085 (19)C13—C141.569 (2)
O2—H12O0.82 (3)C14—C151.511 (2)
O3—C211.2134 (19)C15—C161.386 (2)
N1—C121.4682 (19)C15—C201.397 (2)
N1—C81.470 (2)C16—C171.391 (2)
N1—C141.485 (2)C16—H16A0.948 (19)
N2—C221.465 (2)C17—C181.398 (3)
N2—C131.469 (2)C17—H17A0.96 (2)
N2—C301.478 (2)C18—C191.385 (2)
C1—C21.383 (2)C18—H18A0.96 (2)
C1—C61.398 (2)C19—C201.392 (2)
C1—H1A1.01 (2)C19—H19A0.97 (2)
C2—C31.388 (3)C20—C211.479 (2)
C2—H2A1.03 (2)C22—C231.528 (2)
C3—C41.388 (3)C22—H22A1.02 (2)
C3—H3A0.97 (2)C22—H22B1.02 (2)
C4—C51.393 (2)C23—C241.518 (2)
C4—H4A0.93 (2)C23—H23A0.98 (2)
C5—C61.394 (2)C24—C251.392 (2)
C5—H5A1.01 (2)C24—C291.392 (2)
C6—C71.471 (2)C25—C261.391 (3)
C7—C91.344 (2)C25—H25A0.96 (2)
C7—H7A1.05 (2)C26—C271.380 (3)
C8—C91.528 (2)C26—H26A0.98 (2)
C8—H8A0.96 (2)C27—C281.386 (3)
C8—H8B1.01 (2)C27—H27A1.00 (2)
C9—C101.497 (2)C28—C291.388 (2)
C10—C111.523 (2)C28—H28A0.98 (2)
C11—C231.551 (2)C29—H29A0.96 (2)
C11—C121.557 (2)C30—H30A0.98 (2)
C11—C131.557 (2)C30—H30B1.03 (2)
C12—H12A0.989 (19)C30—H30C1.06 (2)
C12—H12B0.975 (19)
C14—O2—H12O105.0 (18)O2—C14—C13111.61 (13)
C12—N1—C8109.09 (12)N1—C14—C13105.53 (12)
C12—N1—C14101.76 (12)C15—C14—C13104.90 (12)
C8—N1—C14115.23 (12)C16—C15—C20120.51 (14)
C22—N2—C13105.68 (13)C16—C15—C14128.27 (15)
C22—N2—C30111.93 (14)C20—C15—C14111.21 (13)
C13—N2—C30115.98 (13)C15—C16—C17118.07 (16)
C2—C1—C6120.81 (16)C15—C16—H16A118.9 (11)
C2—C1—H1A120.0 (11)C17—C16—H16A123.0 (11)
C6—C1—H1A119.2 (11)C16—C17—C18121.26 (15)
C1—C2—C3120.10 (16)C16—C17—H17A118.4 (12)
C1—C2—H2A119.9 (12)C18—C17—H17A120.4 (12)
C3—C2—H2A120.0 (12)C19—C18—C17120.75 (15)
C2—C3—C4119.93 (16)C19—C18—H18A120.1 (13)
C2—C3—H3A120.5 (13)C17—C18—H18A119.2 (13)
C4—C3—H3A119.6 (13)C18—C19—C20117.80 (16)
C3—C4—C5119.85 (16)C18—C19—H19A122.1 (12)
C3—C4—H4A120.6 (13)C20—C19—H19A120.1 (12)
C5—C4—H4A119.6 (13)C19—C20—C15121.55 (15)
C4—C5—C6120.66 (16)C19—C20—C21127.92 (15)
C4—C5—H5A119.7 (12)C15—C20—C21110.52 (13)
C6—C5—H5A119.6 (12)O3—C21—C20127.33 (14)
C5—C6—C1118.62 (15)O3—C21—C13125.07 (14)
C5—C6—C7122.39 (15)C20—C21—C13107.57 (12)
C1—C6—C7118.99 (15)N2—C22—C23104.88 (14)
C9—C7—C6126.85 (15)N2—C22—H22A106.9 (14)
C9—C7—H7A117.9 (11)C23—C22—H22A116.5 (14)
C6—C7—H7A115.1 (11)N2—C22—H22B109.0 (11)
N1—C8—C9114.88 (13)C23—C22—H22B115.3 (11)
N1—C8—H8A107.7 (12)H22A—C22—H22B104.0 (18)
C9—C8—H8A111.2 (12)C24—C23—C22115.92 (14)
N1—C8—H8B107.6 (11)C24—C23—C11112.96 (13)
C9—C8—H8B108.8 (11)C22—C23—C11104.13 (13)
H8A—C8—H8B106.1 (16)C24—C23—H23A108.3 (12)
C7—C9—C10117.64 (14)C22—C23—H23A108.2 (12)
C7—C9—C8124.61 (14)C11—C23—H23A106.8 (12)
C10—C9—C8117.27 (13)C25—C24—C29118.25 (15)
O1—C10—C9122.92 (15)C25—C24—C23119.22 (15)
O1—C10—C11123.45 (14)C29—C24—C23122.50 (15)
C9—C10—C11113.63 (13)C26—C25—C24121.00 (17)
C10—C11—C23115.69 (13)C26—C25—H25A123.0 (13)
C10—C11—C12105.08 (13)C24—C25—H25A115.8 (13)
C23—C11—C12118.06 (13)C27—C26—C25120.17 (17)
C10—C11—C13110.93 (12)C27—C26—H26A119.1 (12)
C23—C11—C13105.36 (12)C25—C26—H26A120.7 (13)
C12—C11—C13100.70 (12)C26—C27—C28119.42 (16)
N1—C12—C11103.98 (12)C26—C27—H27A121.2 (13)
N1—C12—H12A111.4 (11)C28—C27—H27A119.4 (13)
C11—C12—H12A113.4 (11)C27—C28—C29120.43 (17)
N1—C12—H12B110.0 (11)C27—C28—H28A121.6 (14)
C11—C12—H12B108.6 (11)C29—C28—H28A117.9 (14)
H12A—C12—H12B109.3 (15)C28—C29—C24120.71 (16)
N2—C13—C21113.55 (13)C28—C29—H29A118.1 (13)
N2—C13—C11103.47 (12)C24—C29—H29A121.2 (13)
C21—C13—C11116.85 (12)N2—C30—H30A109.5 (12)
N2—C13—C14113.34 (13)N2—C30—H30B113.5 (12)
C21—C13—C14104.78 (12)H30A—C30—H30B103.0 (17)
C11—C13—C14104.80 (12)N2—C30—H30C109.9 (11)
O2—C14—N1108.21 (12)H30A—C30—H30C110.9 (17)
O2—C14—C15111.55 (13)H30B—C30—H30C109.8 (16)
N1—C14—C15114.89 (13)
C6—C1—C2—C31.7 (3)N2—C13—C14—N1123.70 (13)
C1—C2—C3—C4−0.1 (3)C21—C13—C14—N1−111.97 (13)
C2—C3—C4—C5−1.1 (3)C11—C13—C14—N111.59 (15)
C3—C4—C5—C60.6 (3)N2—C13—C14—C15−114.57 (14)
C4—C5—C6—C11.0 (2)C21—C13—C14—C159.76 (15)
C4—C5—C6—C7−179.61 (15)C11—C13—C14—C15133.32 (12)
C2—C1—C6—C5−2.1 (2)O2—C14—C15—C1651.5 (2)
C2—C1—C6—C7178.44 (15)N1—C14—C15—C16−72.2 (2)
C5—C6—C7—C946.8 (2)C13—C14—C15—C16172.45 (15)
C1—C6—C7—C9−133.81 (18)O2—C14—C15—C20−128.10 (14)
C12—N1—C8—C948.56 (17)N1—C14—C15—C20108.28 (15)
C14—N1—C8—C9−65.12 (17)C13—C14—C15—C20−7.11 (17)
C6—C7—C9—C10173.33 (15)C20—C15—C16—C17−1.4 (2)
C6—C7—C9—C81.6 (3)C14—C15—C16—C17179.04 (16)
N1—C8—C9—C7145.29 (15)C15—C16—C17—C18−0.7 (3)
N1—C8—C9—C10−26.47 (19)C16—C17—C18—C191.9 (3)
C7—C9—C10—O137.5 (2)C17—C18—C19—C20−0.9 (3)
C8—C9—C10—O1−150.11 (15)C18—C19—C20—C15−1.3 (2)
C7—C9—C10—C11−142.41 (14)C18—C19—C20—C21179.67 (16)
C8—C9—C10—C1129.93 (18)C16—C15—C20—C192.5 (2)
O1—C10—C11—C23−4.6 (2)C14—C15—C20—C19−177.89 (14)
C9—C10—C11—C23175.34 (12)C16—C15—C20—C21−178.31 (14)
O1—C10—C11—C12127.48 (16)C14—C15—C20—C211.28 (18)
C9—C10—C11—C12−52.57 (15)C19—C20—C21—O32.4 (3)
O1—C10—C11—C13−124.53 (16)C15—C20—C21—O3−176.71 (15)
C9—C10—C11—C1355.42 (17)C19—C20—C21—C13−175.60 (15)
C8—N1—C12—C11−72.99 (15)C15—C20—C21—C135.29 (17)
C14—N1—C12—C1149.20 (14)N2—C13—C21—O3−63.2 (2)
C10—C11—C12—N174.48 (14)C11—C13—C21—O357.2 (2)
C23—C11—C12—N1−154.79 (13)C14—C13—C21—O3172.66 (15)
C13—C11—C12—N1−40.83 (15)N2—C13—C21—C20114.90 (14)
C22—N2—C13—C2189.21 (15)C11—C13—C21—C20−124.74 (14)
C30—N2—C13—C21−35.42 (19)C14—C13—C21—C20−9.29 (16)
C22—N2—C13—C11−38.45 (15)C13—N2—C22—C2341.02 (16)
C30—N2—C13—C11−163.08 (14)C30—N2—C22—C23168.15 (14)
C22—N2—C13—C14−151.36 (13)N2—C22—C23—C2498.82 (16)
C30—N2—C13—C1484.00 (17)N2—C22—C23—C11−25.91 (17)
C10—C11—C13—N2147.07 (13)C10—C11—C23—C24113.20 (15)
C23—C11—C13—N221.16 (15)C12—C11—C23—C24−12.5 (2)
C12—C11—C13—N2−102.09 (13)C13—C11—C23—C24−123.89 (14)
C10—C11—C13—C2121.49 (18)C10—C11—C23—C22−120.19 (15)
C23—C11—C13—C21−104.42 (15)C12—C11—C23—C22114.10 (15)
C12—C11—C13—C21132.33 (14)C13—C11—C23—C222.72 (16)
C10—C11—C13—C14−93.95 (14)C22—C23—C24—C25160.82 (15)
C23—C11—C13—C14140.15 (12)C11—C23—C24—C25−79.13 (19)
C12—C11—C13—C1416.89 (14)C22—C23—C24—C29−21.0 (2)
C12—N1—C14—O282.39 (14)C11—C23—C24—C2999.04 (18)
C8—N1—C14—O2−159.73 (12)C29—C24—C25—C26−1.0 (2)
C12—N1—C14—C15−152.24 (13)C23—C24—C25—C26177.28 (15)
C8—N1—C14—C15−34.36 (18)C24—C25—C26—C270.1 (3)
C12—N1—C14—C13−37.20 (14)C25—C26—C27—C281.0 (3)
C8—N1—C14—C1380.67 (14)C26—C27—C28—C29−1.2 (3)
N2—C13—C14—O26.38 (17)C27—C28—C29—C240.3 (3)
C21—C13—C14—O2130.71 (13)C25—C24—C29—C280.8 (2)
C11—C13—C14—O2−105.73 (14)C23—C24—C29—C28−177.41 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H12O···N20.82 (3)2.10 (3)2.6741 (19)127 (2)
C17—H17A···O1i0.965 (19)2.56 (2)3.278 (2)130.8 (15)
C26—H26A···O1ii0.98 (3)2.60 (2)3.535 (2)161.6 (18)
C29—H29A···O2iii0.96 (3)2.43 (2)3.363 (2)165.7 (18)

Symmetry codes: (i) x, y−1, z; (ii) −x+2, −y+2, −z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2455).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. & Manavathu, E. K. (2001). J. Med. Chem.44, 586–593. [PubMed]
  • El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem.43, 2915–2921. [PubMed]
  • Gothelf, K. & Jørgensen, K. A. (1998). Chem. Rev.98, 863–909. [PubMed]
  • Gu, Y. G., Zhang, X., Clark, R. F., Djuric, S. & Ma, Z. (2004). Tetrahedron Lett.45, 3051–3053.
  • Horri, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N. & Matsui, K. (1986). J. Med. Chem.29, 1038–1046. [PubMed]
  • Karpas, A., Fleet, G. W. J., Dwek, R. A., Petursson, S., Mamgoong, S. K., Ramsden, N. G., Jacob, G. S. & Rademacher, T. W. (1988). Proc. Natl. Acad. Sci. USA, 85, 9229–9233. [PubMed]
  • Lee, H. K., Chun, J. S. & Pak, C. S. (2001). Tetrahedron Lett.42, 3483–3486.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tsukamoto, K., Uno, A., Shimada, S. & Imokaw, G. (1989). Clin. Res.37A, 722–729.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography