PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1520.
Published online 2010 June 5. doi:  10.1107/S1600536810020106
PMCID: PMC3006789

2,4-Dichloro-N-(3-methyl­phen­yl)benzene­sulfonamide

Abstract

In the title compound, C13H11Cl2NO2S, the conformations of the N—C bonds in the C—SO2—NH—C segments have gauche torsions with respect to the S=O bonds. The dihedral angle between the two benzene rings is 68.6 (1)°. The crystal structure features inversion dimers linked by pairs of N—H(...)O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006 [triangle]). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2010a [triangle],b [triangle],c [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1520-scheme1.jpg

Experimental

Crystal data

  • C13H11Cl2NO2S
  • M r = 316.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1520-efi1.jpg
  • a = 7.9031 (7) Å
  • b = 14.507 (1) Å
  • c = 12.715 (1) Å
  • β = 99.895 (8)°
  • V = 1436.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 299 K
  • 0.36 × 0.24 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.815, T max = 0.891
  • 5737 measured reflections
  • 2915 independent reflections
  • 2389 reflections with I > 2σ(I)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.097
  • S = 1.03
  • 2915 reflections
  • 176 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020106/bq2216sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020106/bq2216Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al. , 2010a,b,c), the structure of 2,4-dichloro-N-(3-methylphenyl)-benzenesulfonamide (I) has been determined. The conformations of the N—C bonds in the C—SO2—NH—C segment have gauche torsions with respect to the S═O bonds (Fig. 1).

The molecule is twisted at the S atom with the C1—SO2—NH—C7 torsion angle of -60.2 (2)°, compared to the values of 60.6 (4)°, -59.7 (3)°, 63.9 (4)° and 53.0 (4)°, in the four molecules of 2,4-dichloro-N-(4-methylphenyl)benzenesulfonamide (II) (Gowda et al., 2010b), 55.1 (3)° (molecule 1) and -48.3 (3)° (molecule 2) in 2,4-dichloro-N-(phenyl)-benzenesulfonamide (III) (Gowda et al., 2010c) and 55.8 (2)° and -58.4 (3)°, in the 2 molecules of N-(3-methylphenyl)- benzenesulfonamide (IV) (Gowda et al., 2010a).

The sulfonyl benzene and the aniline benzene rings in (I) are tilted relative to each other by 68.6 (1)°, compared to the values of 85.2 (1)° (molecule 1), 80.5 (2)° (molecule 2 A), 80.1 (2)° (molecule 2B), 87.5 (7) (molecule 3 A), 87.0 (6)° (molecule 3B) and 72.4 (1)° (molecule 4) in (II), 80.5 (2)° in the molecule 1 and 64.9 (1)° in molecule 2 of (III), and 67.9 (1)° in molecule 1 and 68.6 (1)° in molecule 2 of (IV).

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link the molecules through inversion-related dimers into infinite zigzag sequences running parallel to the c-axis. Part of the crystal structure is shown in Fig. 2.

Experimental

The solution of 1,3-dichlorobenzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with m-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 2,4-dichloro-N-(3-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). Prism like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (1)Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C13H11Cl2NO2SF(000) = 648
Mr = 316.19Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3053 reflections
a = 7.9031 (7) Åθ = 2.6–27.8°
b = 14.507 (1) ŵ = 0.59 mm1
c = 12.715 (1) ÅT = 299 K
β = 99.895 (8)°Prism, colorless
V = 1436.1 (2) Å30.36 × 0.24 × 0.20 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2915 independent reflections
Radiation source: fine-focus sealed tube2389 reflections with I > 2σ(I)
graphiteRint = 0.012
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −9→7
Tmin = 0.815, Tmax = 0.891k = −18→15
5737 measured reflectionsl = −14→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0451P)2 + 0.717P] where P = (Fo2 + 2Fc2)/3
2915 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = −0.49 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6418 (2)0.33869 (13)0.20486 (15)0.0350 (4)
C20.8068 (2)0.36037 (14)0.18846 (16)0.0402 (4)
C30.9482 (3)0.31950 (15)0.24999 (18)0.0509 (5)
H31.05860.33360.23890.061*
C40.9232 (3)0.25777 (15)0.32759 (18)0.0520 (5)
C50.7617 (3)0.23604 (15)0.34720 (17)0.0502 (5)
H50.74750.19480.40100.060*
C60.6213 (3)0.27706 (14)0.28493 (16)0.0420 (4)
H60.51140.26310.29700.050*
C70.4604 (3)0.53438 (14)0.24891 (17)0.0442 (5)
C80.3109 (3)0.53560 (16)0.2914 (2)0.0549 (6)
H80.21170.50890.25380.066*
C90.3078 (4)0.57624 (18)0.3896 (2)0.0714 (8)
C100.4569 (5)0.6157 (2)0.4429 (2)0.0811 (9)
H100.45700.64280.50920.097*
C110.6042 (4)0.6158 (2)0.4005 (2)0.0768 (8)
H110.70260.64390.43730.092*
C120.6080 (3)0.57441 (17)0.3031 (2)0.0589 (6)
H120.70870.57360.27450.071*
C130.1436 (6)0.5793 (3)0.4345 (4)0.1194 (15)
H13A0.06570.53340.40000.143*
H13B0.09220.63920.42230.143*
H13C0.16820.56720.50980.143*
N10.4582 (2)0.49567 (12)0.14485 (14)0.0433 (4)
H1N0.516 (3)0.5237 (15)0.1041 (16)0.052*
O10.46312 (19)0.37240 (11)0.01548 (11)0.0509 (4)
O20.31399 (17)0.34804 (11)0.16821 (13)0.0538 (4)
S10.45443 (6)0.38552 (3)0.12621 (4)0.03929 (14)
Cl10.84366 (7)0.44023 (5)0.09354 (5)0.06074 (19)
Cl21.10203 (10)0.20696 (6)0.40428 (7)0.0889 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0317 (9)0.0341 (9)0.0383 (10)−0.0004 (7)0.0031 (7)−0.0038 (8)
C20.0354 (9)0.0417 (10)0.0439 (11)−0.0010 (8)0.0076 (8)−0.0012 (8)
C30.0337 (10)0.0520 (12)0.0659 (14)0.0041 (9)0.0056 (9)−0.0013 (11)
C40.0461 (12)0.0456 (12)0.0579 (13)0.0081 (9)−0.0093 (10)−0.0004 (10)
C50.0605 (13)0.0409 (11)0.0462 (12)−0.0013 (10)0.0006 (10)0.0059 (9)
C60.0418 (10)0.0390 (10)0.0448 (11)−0.0047 (8)0.0068 (8)−0.0016 (8)
C70.0510 (12)0.0348 (10)0.0459 (11)0.0067 (9)0.0059 (9)0.0047 (9)
C80.0598 (14)0.0464 (12)0.0615 (14)0.0002 (10)0.0194 (11)0.0008 (11)
C90.100 (2)0.0550 (15)0.0682 (17)0.0041 (14)0.0391 (16)0.0008 (13)
C100.126 (3)0.0642 (17)0.0560 (16)0.0059 (18)0.0231 (17)−0.0095 (14)
C110.093 (2)0.0638 (17)0.0661 (17)−0.0007 (15)−0.0074 (16)−0.0131 (14)
C120.0566 (14)0.0536 (13)0.0639 (15)0.0025 (11)0.0033 (11)−0.0041 (11)
C130.143 (4)0.114 (3)0.125 (3)−0.007 (3)0.089 (3)−0.019 (2)
N10.0453 (9)0.0410 (9)0.0441 (10)0.0038 (7)0.0092 (7)0.0050 (7)
O10.0512 (9)0.0578 (9)0.0401 (8)−0.0029 (7)−0.0021 (6)−0.0060 (7)
O20.0320 (7)0.0580 (9)0.0711 (10)−0.0050 (7)0.0083 (7)0.0028 (8)
S10.0313 (2)0.0429 (3)0.0420 (3)−0.00170 (19)0.00161 (18)−0.0009 (2)
Cl10.0471 (3)0.0713 (4)0.0669 (4)−0.0056 (3)0.0187 (3)0.0193 (3)
Cl20.0670 (4)0.0819 (5)0.1043 (6)0.0210 (4)−0.0233 (4)0.0194 (4)

Geometric parameters (Å, °)

C1—C61.385 (3)C8—H80.9300
C1—C21.392 (3)C9—C101.379 (5)
C1—S11.7734 (18)C9—C131.505 (4)
C2—C31.383 (3)C10—C111.365 (5)
C2—Cl11.733 (2)C10—H100.9300
C3—C41.372 (3)C11—C121.381 (4)
C3—H30.9300C11—H110.9300
C4—C51.379 (3)C12—H120.9300
C4—Cl21.737 (2)C13—H13A0.9600
C5—C61.382 (3)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—H60.9300N1—S11.6150 (18)
C7—C121.377 (3)N1—H1N0.852 (10)
C7—C81.381 (3)O1—S11.4340 (15)
C7—N11.435 (3)O2—S11.4201 (15)
C8—C91.385 (4)
C6—C1—C2119.14 (17)C8—C9—C13120.3 (3)
C6—C1—S1118.04 (14)C11—C10—C9121.4 (3)
C2—C1—S1122.82 (15)C11—C10—H10119.3
C3—C2—C1120.37 (19)C9—C10—H10119.3
C3—C2—Cl1117.66 (16)C10—C11—C12120.3 (3)
C1—C2—Cl1121.96 (15)C10—C11—H11119.8
C4—C3—C2118.96 (19)C12—C11—H11119.8
C4—C3—H3120.5C7—C12—C11119.0 (3)
C2—C3—H3120.5C7—C12—H12120.5
C3—C4—C5122.14 (19)C11—C12—H12120.5
C3—C4—Cl2118.47 (18)C9—C13—H13A109.5
C5—C4—Cl2119.39 (18)C9—C13—H13B109.5
C4—C5—C6118.4 (2)H13A—C13—H13B109.5
C4—C5—H5120.8C9—C13—H13C109.5
C6—C5—H5120.8H13A—C13—H13C109.5
C5—C6—C1121.01 (19)H13B—C13—H13C109.5
C5—C6—H6119.5C7—N1—S1121.30 (14)
C1—C6—H6119.5C7—N1—H1N116.9 (16)
C12—C7—C8120.5 (2)S1—N1—H1N112.4 (16)
C12—C7—N1120.1 (2)O2—S1—O1119.39 (9)
C8—C7—N1119.3 (2)O2—S1—N1108.64 (9)
C7—C8—C9120.5 (3)O1—S1—N1105.82 (9)
C7—C8—H8119.8O2—S1—C1105.78 (9)
C9—C8—H8119.8O1—S1—C1109.07 (9)
C10—C9—C8118.3 (3)N1—S1—C1107.68 (9)
C10—C9—C13121.4 (3)
C6—C1—C2—C31.2 (3)C8—C9—C10—C110.6 (4)
S1—C1—C2—C3−177.90 (16)C13—C9—C10—C11−177.7 (3)
C6—C1—C2—Cl1−177.39 (15)C9—C10—C11—C12−1.3 (5)
S1—C1—C2—Cl13.5 (2)C8—C7—C12—C110.0 (4)
C1—C2—C3—C4−0.3 (3)N1—C7—C12—C11176.4 (2)
Cl1—C2—C3—C4178.37 (17)C10—C11—C12—C71.0 (4)
C2—C3—C4—C5−0.9 (3)C12—C7—N1—S1107.6 (2)
C2—C3—C4—Cl2180.00 (17)C8—C7—N1—S1−76.0 (2)
C3—C4—C5—C61.1 (3)C7—N1—S1—O253.93 (18)
Cl2—C4—C5—C6−179.77 (16)C7—N1—S1—O1−176.73 (15)
C4—C5—C6—C1−0.1 (3)C7—N1—S1—C1−60.20 (18)
C2—C1—C6—C5−1.0 (3)C6—C1—S1—O21.58 (18)
S1—C1—C6—C5178.18 (16)C2—C1—S1—O2−179.27 (16)
C12—C7—C8—C9−0.7 (3)C6—C1—S1—O1−128.01 (16)
N1—C7—C8—C9−177.1 (2)C2—C1—S1—O151.14 (18)
C7—C8—C9—C100.4 (4)C6—C1—S1—N1117.60 (16)
C7—C8—C9—C13178.6 (3)C2—C1—S1—N1−63.25 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (1)2.17 (1)2.940 (2)151 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2216).

References

  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010a). Acta Cryst. E66, o434. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010b). Acta Cryst. E66, o190. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010c). Private communication (refcode CCDC 691312). CCDC, Union Road, Cambridge, England.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography