PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1676.
Published online 2010 June 16. doi:  10.1107/S160053681002235X
PMCID: PMC3006788

(2E)-1-(2-Bromo­phen­yl)-3-(3,4,5-trimeth­oxy­phen­yl)prop-2-en-1-one

Abstract

In the chalcone title compound, C18H17BrO4, the dihedral angle between the mean planes of the 2-bromo- and 3,4,5-trimethoxy-substituted benzene rings is 89.3 (1)°. The angles between the mean plane of the prop-2-en-1-one group and the 2-bromo­phenyl and 3,4,5-trimeth­oxy­phenyl ring planes are 59.7 (1) and 40.5 (8)°, respectively. While no classical hydrogen bonds are present, three weak inter­molecular C—H(...)O inter­actions and weak C—H(...)Br and C—H(...)Cg π-ring stacking inter­actions [C—H(...)Cg distance = 3.377 (2) Å] are observed, which contribute to the stability of crystal packing.

Related literature

For the radical quenching properties of included phenol groups, see: Dhar (1981 [triangle]). For the anti­cancer activity of chalcones, see: Dimmock et al. (1999 [triangle]). For related structures, see: Chantrapromma et al. (2009 [triangle]); Patil et al. (2006 [triangle]); Suwunwong et al. (2009 [triangle]). For bond distances and angles, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1676-scheme1.jpg

Experimental

Crystal data

  • C18H17BrO4
  • M r = 377.23
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1676-efi1.jpg
  • a = 9.9616 (4) Å
  • b = 13.6020 (13) Å
  • c = 24.4162 (17) Å
  • V = 3308.4 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.50 mm−1
  • T = 110 K
  • 0.47 × 0.42 × 0.31 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.499, T max = 1.000
  • 8122 measured reflections
  • 3296 independent reflections
  • 2940 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.112
  • S = 1.04
  • 3296 reflections
  • 211 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002235X/fj2317sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002235X/fj2317Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KV thanks UGC for a Junior Research Fellowship and for an SAP chemical grant. HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Chalcones, or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenol groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives (Dhar, 1981). Chalcones have been reported to possess many useful biological properties, including anti-inflammatory,antimicrobial, antifungal, antioxidant, cytotoxic, anticancer activities (Dimmock et al., 1999). The crystal structures of some closely related chalcones, viz., (E)-1-(4-bromophenyl)-3-(3,4,5-trimethoxy-phenyl)prop-2-en-1-one (Suwunwong et al., 2009), (E)-1-(4-bromophenyl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (Chantrapromma et al., 2009) and 1-(4-bromophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (Patil et al., 2006) have been reported. Hence in continuation with the synthesis and crystal structure determination and also owing to the importance of these flavanoid analogs, this new bromo-trimethoxy substituted chalcone, (I), C18H17BrO4, is synthesized and its crystal structure is reported.

The title compound, (I), C18H17BrO4,is a chalcone with 2-bromophenyl and 3,4,5-trimethoxyphenyl rings bonded at opposite sides of a propene group (Fig. 2). The dihedral angle between mean planes of the benzene rings in the ortho-bromo and meta- para-trimethoxy substituted rings is 89.3 (1)°. The angles between the mean plane of the prop-2-ene-1-one group (C1/C7/O1/C8) and the mean planes of the benzene rings in the 2-bromophenyl (C1–C6)and 3,4,5-trimethoxyphenyl rings (C10—C15) are 59.7 (1)° and 40.5 (8)°, respectively. Bond distances and angles are in normal ranges (Allen, 2002). While no classical hydrogen bonds are present, three weak intermolecular C—H···O interactions (Fig. 3) and weak C—H···Br (Table 1) and C17—H17A···Cg2 π-ring stacking interactions (H17A···Cg2 = 2.83 Å; H17A–Perp = 2.82 Å; C17—H17A···Cg2 = 125°; C17···Cg2—H17A = 3.379 (2) Å; Cg2 = C10–C15) are observed which contribute to the stability of crystal packing.

Experimental

A 50% KOH solution was added to a mixture of 2-bromo acetophenone (0.01 mol, 1.99 g) and 3,4,5-trimethoxy benzaldehyde (0.01 mol, 1.96 g) in 25 ml of ethanol (Fig. 1). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from ethyl acetate by slow evaporation method and yield of the compound was 45% (m.p.325–327 K). Analytical data: Found (Calculated) for C18H17BrO4: C %: 57.26 (57.31%); H%: 4.49 (4.54%).

Refinement

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances = 0.95–0.96Å and with Uiso(H) = 1.18–1.50 Ueq(C).

Figures

Fig. 1.
Reaction Scheme for the title compound.
Fig. 2.
Molecular structure of (I), C18H17BrO4, showing the atom labeling scheme and 50% probability displacement ellipsoids.
Fig. 3.
Packing diagram of the title compound, C18H17BrO4, viewed down the a axis. Dashed lines indicate weak C—H···O intermolecular hydrogen bond interactions linking the molecules into chains along the (011).

Crystal data

C18H17BrO4F(000) = 1536
Mr = 377.23Dx = 1.515 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4251 reflections
a = 9.9616 (4) Åθ = 4.4–74.1°
b = 13.6020 (13) ŵ = 2.50 mm1
c = 24.4162 (17) ÅT = 110 K
V = 3308.4 (4) Å3Chunk, colorless
Z = 80.47 × 0.42 × 0.31 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector3296 independent reflections
Radiation source: Enhance (Cu) X-ray Source2940 reflections with I > 2σ(I)
graphiteRint = 0.022
Detector resolution: 10.5081 pixels mm-1θmax = 26.3°, θmin = 2.6°
ω scansh = −12→7
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −16→15
Tmin = 0.499, Tmax = 1.000l = −30→28
8122 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0769P)2 + 1.9413P] where P = (Fo2 + 2Fc2)/3
3296 reflections(Δ/σ)max = 0.003
211 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = −0.67 e Å3

Special details

Experimental. IR data (KBr) \v cm-1: 2998 cm-1, 2937 cm-1, 2839 cm-1 (C—H al. str), 3058 cm-1 (C—H ar.str) 1646 cm-1 (C=O), 1580 cm-1 (C=C); 1245 cm-1 (C—O—C).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.74430 (2)0.76760 (2)0.612337 (10)0.02659 (13)
O10.74217 (17)0.57654 (14)0.69518 (10)0.0340 (5)
O20.31902 (16)0.16171 (11)0.60595 (6)0.0191 (3)
O30.17918 (15)0.20383 (11)0.51830 (6)0.0180 (3)
O40.14169 (16)0.39311 (11)0.48455 (6)0.0203 (3)
C10.5557 (2)0.68349 (15)0.68770 (8)0.0159 (4)
C20.6035 (2)0.77077 (15)0.66443 (8)0.0169 (4)
C30.5453 (2)0.86108 (16)0.67668 (9)0.0219 (4)
H3A0.57980.91980.66100.026*
C40.4364 (2)0.86455 (17)0.71200 (9)0.0255 (5)
H4A0.39660.92600.72080.031*
C50.3854 (2)0.77852 (17)0.73449 (9)0.0254 (5)
H5A0.31010.78110.75840.031*
C60.4441 (2)0.68889 (16)0.72215 (9)0.0203 (4)
H6A0.40790.63030.73730.024*
C70.6256 (2)0.58607 (16)0.68075 (9)0.0196 (4)
C80.5507 (2)0.50263 (15)0.65798 (9)0.0183 (4)
H8A0.58620.43840.66300.022*
C90.4355 (2)0.51190 (14)0.63061 (9)0.0157 (4)
H9A0.39750.57580.62820.019*
C100.3627 (2)0.43154 (15)0.60391 (8)0.0149 (4)
C110.3777 (2)0.33362 (15)0.62149 (8)0.0157 (4)
H11A0.43240.31850.65220.019*
C120.3114 (2)0.25927 (15)0.59324 (9)0.0151 (4)
C130.2319 (2)0.28097 (16)0.54734 (9)0.0144 (4)
C140.2176 (2)0.37893 (15)0.53031 (9)0.0158 (4)
C150.2808 (2)0.45419 (15)0.55925 (9)0.0157 (4)
H15A0.26810.52070.54860.019*
C160.3980 (2)0.13512 (16)0.65246 (10)0.0242 (5)
H16A0.39290.06390.65810.036*
H16B0.36370.16900.68500.036*
H16C0.49160.15420.64620.036*
C170.0357 (2)0.19852 (18)0.51743 (10)0.0249 (5)
H17A0.00770.14000.49700.037*
H17B−0.00050.25740.49970.037*
H17C0.00180.19450.55500.037*
C180.1511 (3)0.48850 (18)0.45889 (11)0.0319 (6)
H18A0.09800.48870.42510.048*
H18B0.24520.50270.45020.048*
H18C0.11650.53880.48390.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02410 (18)0.0327 (2)0.02294 (19)−0.00535 (9)0.00684 (8)−0.00220 (9)
O10.0244 (9)0.0223 (9)0.0552 (13)0.0010 (6)−0.0201 (8)−0.0062 (9)
O20.0224 (8)0.0124 (7)0.0226 (8)−0.0033 (6)−0.0055 (6)0.0007 (6)
O30.0159 (7)0.0188 (7)0.0194 (7)−0.0023 (6)−0.0009 (6)−0.0073 (6)
O40.0254 (8)0.0187 (7)0.0169 (7)−0.0003 (6)−0.0078 (6)0.0006 (6)
C10.0177 (9)0.0161 (10)0.0138 (9)−0.0046 (8)−0.0051 (8)−0.0020 (7)
C20.0177 (10)0.0213 (11)0.0117 (9)−0.0025 (8)0.0008 (8)−0.0023 (7)
C30.0317 (12)0.0159 (10)0.0180 (10)−0.0011 (9)−0.0002 (9)0.0020 (8)
C40.0342 (13)0.0220 (11)0.0204 (10)0.0057 (10)0.0026 (10)−0.0045 (8)
C50.0251 (11)0.0334 (13)0.0178 (10)−0.0009 (10)0.0052 (9)−0.0040 (9)
C60.0247 (10)0.0207 (10)0.0157 (10)−0.0063 (9)−0.0027 (8)0.0007 (8)
C70.0208 (10)0.0183 (10)0.0197 (10)−0.0017 (8)−0.0051 (8)0.0001 (8)
C80.0204 (10)0.0117 (8)0.0229 (11)−0.0009 (8)−0.0033 (9)−0.0015 (8)
C90.0184 (10)0.0126 (9)0.0160 (10)0.0005 (8)0.0010 (8)−0.0011 (7)
C100.0142 (9)0.0141 (9)0.0164 (9)−0.0010 (8)0.0018 (8)−0.0034 (7)
C110.0152 (9)0.0154 (9)0.0163 (9)0.0005 (8)−0.0024 (8)−0.0015 (8)
C120.0122 (9)0.0150 (9)0.0180 (10)0.0000 (7)0.0021 (8)0.0008 (8)
C130.0116 (9)0.0171 (10)0.0144 (10)−0.0023 (7)0.0020 (7)−0.0038 (8)
C140.0134 (8)0.0194 (10)0.0145 (9)0.0019 (8)0.0010 (8)−0.0029 (8)
C150.0156 (8)0.0133 (9)0.0182 (10)0.0028 (8)0.0021 (8)−0.0019 (8)
C160.0263 (11)0.0166 (9)0.0296 (12)−0.0004 (9)−0.0076 (10)0.0053 (8)
C170.0171 (10)0.0285 (12)0.0290 (12)−0.0073 (9)−0.0057 (9)0.0013 (9)
C180.0448 (15)0.0260 (12)0.0251 (12)−0.0022 (11)−0.0135 (11)0.0079 (9)

Geometric parameters (Å, °)

Br1—C21.894 (2)C8—H8A0.9500
O1—C71.221 (3)C9—C101.465 (3)
O2—C121.365 (2)C9—H9A0.9500
O2—C161.428 (3)C10—C151.396 (3)
O3—C131.371 (2)C10—C111.407 (3)
O3—C171.431 (3)C11—C121.391 (3)
O4—C141.363 (3)C11—H11A0.9500
O4—C181.444 (3)C12—C131.404 (3)
C1—C61.396 (3)C13—C141.403 (3)
C1—C21.400 (3)C14—C151.394 (3)
C1—C71.506 (3)C15—H15A0.9500
C2—C31.391 (3)C16—H16A0.9800
C3—C41.386 (3)C16—H16B0.9800
C3—H3A0.9500C16—H16C0.9800
C4—C51.389 (3)C17—H17A0.9800
C4—H4A0.9500C17—H17B0.9800
C5—C61.385 (3)C17—H17C0.9800
C5—H5A0.9500C18—H18A0.9800
C6—H6A0.9500C18—H18B0.9800
C7—C81.468 (3)C18—H18C0.9800
C8—C91.334 (3)
C12—O2—C16117.25 (16)C12—C11—C10119.09 (19)
C13—O3—C17115.38 (17)C12—C11—H11A120.5
C14—O4—C18116.55 (17)C10—C11—H11A120.5
C6—C1—C2118.09 (19)O2—C12—C11124.57 (19)
C6—C1—C7118.82 (18)O2—C12—C13114.68 (18)
C2—C1—C7122.91 (19)C11—C12—C13120.74 (19)
C3—C2—C1121.3 (2)O3—C13—C14122.3 (2)
C3—C2—Br1118.25 (16)O3—C13—C12117.91 (19)
C1—C2—Br1120.35 (15)C14—C13—C12119.56 (19)
C4—C3—C2119.3 (2)O4—C14—C15124.20 (19)
C4—C3—H3A120.3O4—C14—C13115.69 (18)
C2—C3—H3A120.3C15—C14—C13120.1 (2)
C3—C4—C5120.3 (2)C14—C15—C10119.83 (19)
C3—C4—H4A119.9C14—C15—H15A120.1
C5—C4—H4A119.9C10—C15—H15A120.1
C6—C5—C4120.0 (2)O2—C16—H16A109.5
C6—C5—H5A120.0O2—C16—H16B109.5
C4—C5—H5A120.0H16A—C16—H16B109.5
C5—C6—C1120.9 (2)O2—C16—H16C109.5
C5—C6—H6A119.5H16A—C16—H16C109.5
C1—C6—H6A119.5H16B—C16—H16C109.5
O1—C7—C8120.7 (2)O3—C17—H17A109.5
O1—C7—C1120.0 (2)O3—C17—H17B109.5
C8—C7—C1119.23 (18)H17A—C17—H17B109.5
C9—C8—C7123.64 (19)O3—C17—H17C109.5
C9—C8—H8A118.2H17A—C17—H17C109.5
C7—C8—H8A118.2H17B—C17—H17C109.5
C8—C9—C10125.33 (18)O4—C18—H18A109.5
C8—C9—H9A117.3O4—C18—H18B109.5
C10—C9—H9A117.3H18A—C18—H18B109.5
C15—C10—C11120.61 (19)O4—C18—H18C109.5
C15—C10—C9118.17 (18)H18A—C18—H18C109.5
C11—C10—C9121.18 (19)H18B—C18—H18C109.5
C6—C1—C2—C32.4 (3)C9—C10—C11—C12−177.03 (19)
C7—C1—C2—C3−172.66 (19)C16—O2—C12—C111.8 (3)
C6—C1—C2—Br1−174.42 (15)C16—O2—C12—C13−179.68 (19)
C7—C1—C2—Br110.5 (3)C10—C11—C12—O2179.33 (19)
C1—C2—C3—C4−1.0 (3)C10—C11—C12—C130.9 (3)
Br1—C2—C3—C4175.89 (17)C17—O3—C13—C14−68.0 (3)
C2—C3—C4—C5−0.6 (3)C17—O3—C13—C12117.1 (2)
C3—C4—C5—C60.7 (4)O2—C12—C13—O3−4.5 (3)
C4—C5—C6—C10.8 (3)C11—C12—C13—O3174.12 (18)
C2—C1—C6—C5−2.3 (3)O2—C12—C13—C14−179.56 (18)
C7—C1—C6—C5173.0 (2)C11—C12—C13—C14−1.0 (3)
C6—C1—C7—O1−117.3 (3)C18—O4—C14—C1513.2 (3)
C2—C1—C7—O157.7 (3)C18—O4—C14—C13−165.9 (2)
C6—C1—C7—C860.9 (3)O3—C13—C14—O43.4 (3)
C2—C1—C7—C8−124.0 (2)C12—C13—C14—O4178.29 (18)
O1—C7—C8—C9−164.7 (2)O3—C13—C14—C15−175.64 (18)
C1—C7—C8—C917.1 (3)C12—C13—C14—C15−0.8 (3)
C7—C8—C9—C10175.4 (2)O4—C14—C15—C10−176.39 (19)
C8—C9—C10—C15−153.2 (2)C13—C14—C15—C102.6 (3)
C8—C9—C10—C1124.9 (3)C11—C10—C15—C14−2.7 (3)
C15—C10—C11—C121.0 (3)C9—C10—C15—C14175.34 (19)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.952.443.233 (3)140
C9—H9A···O2ii0.952.513.308 (3)141
C15—H15A···O2ii0.952.533.202 (2)128
C17—H17C···Br1iii0.982.993.746 (2)135
C17—H17A···Cg2iv0.982.833.379 (2)125

Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) −x+1/2, y+1/2, z; (iii) −x+1/2, y−1/2, z; (iv) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2317).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894. [PMC free article] [PubMed]
  • Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds New York: John Wiley.
  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4644–o4645.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o120. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography