PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m744–m745.
Published online 2010 June 5. doi:  10.1107/S1600536810020647
PMCID: PMC3006785

catena-Poly[[bis­(μ-3-amino­pyrazine-2-carboxyl­ato)-κ3 N 1,O:O3 O:N 1,O)dilithium]-di-μ-aqua]

Abstract

The title compound, [Li(C5H4N3O2)(H2O)]n, is composed of centrosymmetric dinuclear units, in which the LiI ions are bridged by two carboxyl­ate O atoms donated by two ligands. The dinuclear unit is nearly planar [r.m.s. deviation = 0.0125 (2) Å]. The LiI ion is coordinated by an N,O-chelating ligand, a bridging carboxyl­ate O atom from another ligand and two bridging water O atoms in a distorted trigonal-bipyra­midal geometry. The water O atoms bridge the dinuclear units into a polymeric mol­ecular column along [010]. The columns are held together by O—H(...)O and N—H(...)N hydrogen bonds. An intra­molecular N—H(...)O inter­action also occurs.

Related literature

For the structures of metal (M) complexes with the 3-amino­pyrazine-2-carboxyl­ate ligand, see: Leciejewicz et al. (1997 [triangle] [M = Ca(II)], 1998 [triangle] [M = Sr(II)]); Ptasiewicz-Bąk & Leciejewicz (1997 [triangle] [M = Mg(II)], 1999 [triangle] [M = Ni(II)]); Tayebee et al. (2008 [triangle]) [M = Na(I)]. For the structure of an Li(I) complex with pyrazine-2,3-dicarboxyl­ate and aqua ligands, see: Tombul et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m744-scheme1.jpg

Experimental

Crystal data

  • [Li(C5H4N3O2)(H2O)]
  • M r = 163.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m744-efi1.jpg
  • a = 14.279 (3) Å
  • b = 3.6000 (7) Å
  • c = 13.300 (3) Å
  • β = 106.43 (3)°
  • V = 655.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 293 K
  • 0.26 × 0.21 × 0.04 mm

Data collection

  • Kuma KM-4 four-circle diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.980, T max = 0.994
  • 1997 measured reflections
  • 1913 independent reflections
  • 1297 reflections with I > 2σ(I)
  • R int = 0.017
  • 3 standard reflections every 200 reflections intensity decay: 7.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.147
  • S = 1.04
  • 1913 reflections
  • 115 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: KM-4 Software (Kuma, 1996 [triangle]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020647/hy2312sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020647/hy2312Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Structural studies of divalent metal ion complexes with 3-aminopyrazine-2-carboxylate ligand have shown that the structures of Mg(II) and Ni(II) complexes consist of ML2(H2O)2 monomers. In the Mg(II) comoplex, the ligand adopts a cis configuration (Ptasiewicz-Bąk & Leciejewicz, 1997), while in the Ni(II) complex, a trans configuration (Ptasiewicz-Bąk & Leciejewicz, 1999). Catenated polymeric molecular patterns have been reported in the structures of a Ca(II) complex (Leciejewicz et al., 1997) and a Sr(II) complex (Leciejewicz et al., 1998), in which metal ions are bridged by ligand carboxylate groups acting as bidentate. On the other hand, the structure of a Na(I) complex with the title ligand (Tayebee et al.,2008) is three-dimensional polymeric with Na(I) ions linked by an extended bridging system formed mainly by coordinated water O atoms.

The title compound is composed of centrosymmetric dinuclear units, in which each of the two LiI ions is cheletated by a ligand via an N,O-bonding group. Its O atom acts as bidentate and bridges the other LiI ion (Fig. 1). The dinuclear unit is nearly planar with r.m.s. of 0.0125 (2) Å. The LiI ion is also coordinated by two water O atoms, which bridge the dinuclear units into molecular columns along two bridging pathways propagating in the b-axis direction (Fig. 2). The coordination geometry of the LiI ion is trigonal bipyramidal, with the equatorial plane formed by O1, O3, O3ii and with N1 and O1i at the axial positions [symmetry codes: (i) 1-x, 1-y, 1-z; (ii) x, y-1, z]. The Li—O and Li—N bond distances (Table 1) and bond angles are typical for Li(I) complexes with carboxylate ligands (see, for example, Tombul et al., 2008). The columns are linked by a network of hydrogen bonds, in which water O atoms are donors and the non-bonded carboxylate O atoms in adjacent columns act as acceptors. A weak hydrogen bond links an amino N atom with a hetero-ring N atom in the adjacent column. An intramolecular hydrogen bond which operates between the amino N3 atom and the non-bonding carboxylate O2 atom is also observed (Table 2).

Experimental

The title compound was synthesized by reacting 50 ml of boiling aqueous solutions, one containing 1 mmol of 3-aminopyrazine-2-carboxylic acid (Aldrich), the other containing 1 mmol of lithium hydroxide (Aldrich). The mixture was boiled under reflux for 3 h and after cooling to room temperature, filtered and left to crystallize. A few days later, colourless single crystals in the form of flat needles were found after evaporation to dryness. They were extracted, washed with cold ethanol and dried in air. A crystal used for X-ray data collection was cut to adopt the shape of a flat plate.

Refinement

Water H atoms were found from difference Fourier maps and their coordinates were refined with Uiso(H) = 1.2Ueq(O). H atoms attached to C and N atoms were positioned geometrically and refined as riding, with C—H = 0.93 and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The dinuclear unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) x, -1+y, z; (iii) 1-x, 2-y, 1-z.]
Fig. 2.
Packing diagram of the title compound.

Crystal data

[Li(C5H4N3O2)(H2O)]F(000) = 336
Mr = 163.07Dx = 1.652 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 14.279 (3) Åθ = 6–15°
b = 3.6000 (7) ŵ = 0.13 mm1
c = 13.300 (3) ÅT = 293 K
β = 106.43 (3)°Plate, colourless
V = 655.7 (2) Å30.26 × 0.21 × 0.04 mm
Z = 4

Data collection

Kuma KM-4 four-circle diffractometer1297 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
graphiteθmax = 30.1°, θmin = 1.5°
profile data from ω–2θ scansh = −19→19
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006)k = −5→0
Tmin = 0.980, Tmax = 0.994l = 0→18
1997 measured reflections3 standard reflections every 200 reflections
1913 independent reflections intensity decay: 7.3%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.1051P)2 + 0.022P] where P = (Fo2 + 2Fc2)/3
1913 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.51 e Å3
3 restraintsΔρmin = −0.39 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.25443 (8)0.4711 (3)0.39664 (9)0.0184 (3)
O20.32090 (8)0.2294 (4)0.26435 (8)0.0336 (3)
N10.27984 (8)0.6065 (3)0.49343 (8)0.0216 (3)
N20.08397 (8)0.5364 (4)0.38343 (10)0.0285 (3)
N30.12597 (9)0.2931 (4)0.24154 (10)0.0320 (3)
H20.06490.27450.20900.038*
H10.16900.22350.21150.038*
O10.42229 (7)0.4275 (4)0.41421 (8)0.0352 (3)
C70.33887 (9)0.3657 (4)0.35429 (10)0.0218 (3)
C30.15415 (9)0.4307 (4)0.33936 (10)0.0217 (3)
C60.20958 (10)0.7070 (4)0.53653 (11)0.0254 (3)
H60.22620.80100.60440.030*
C50.11268 (10)0.6720 (4)0.48077 (12)0.0284 (3)
H50.06530.74590.51230.034*
Li10.43334 (19)0.6091 (9)0.5591 (2)0.0370 (6)
O30.44058 (8)1.0866 (3)0.64699 (9)0.0338 (3)
H320.4986 (11)1.117 (6)0.6825 (15)0.041*
H310.4047 (13)1.146 (6)0.6882 (14)0.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0170 (5)0.0153 (5)0.0223 (6)−0.0007 (4)0.0048 (4)0.0018 (4)
O20.0301 (5)0.0450 (7)0.0277 (5)−0.0089 (5)0.0114 (4)−0.0120 (5)
N10.0209 (5)0.0192 (5)0.0242 (5)0.0012 (4)0.0057 (4)−0.0006 (4)
N20.0194 (5)0.0264 (6)0.0390 (6)0.0012 (4)0.0071 (4)0.0025 (5)
N30.0227 (5)0.0401 (7)0.0290 (6)−0.0056 (5)0.0002 (4)−0.0052 (5)
O10.0183 (5)0.0522 (7)0.0338 (5)0.0004 (5)0.0052 (4)−0.0142 (5)
C70.0202 (6)0.0209 (6)0.0242 (5)−0.0021 (4)0.0064 (4)−0.0015 (5)
C30.0199 (5)0.0171 (5)0.0262 (6)−0.0019 (4)0.0033 (4)0.0034 (5)
C60.0282 (6)0.0225 (7)0.0273 (6)0.0020 (5)0.0108 (5)−0.0020 (5)
C50.0238 (6)0.0237 (7)0.0408 (8)0.0031 (5)0.0140 (5)0.0006 (6)
Li10.0256 (12)0.0484 (17)0.0355 (13)0.0016 (11)0.0060 (10)−0.0120 (12)
O30.0256 (5)0.0411 (7)0.0352 (6)−0.0012 (5)0.0092 (4)−0.0069 (5)

Geometric parameters (Å, °)

C2—N11.3274 (16)C6—C51.378 (2)
C2—C31.4263 (17)C6—H60.9300
C2—C71.5164 (17)C5—H50.9300
O2—C71.2505 (17)Li1—N12.118 (3)
N1—C61.3385 (17)Li1—O11.999 (3)
N2—C51.335 (2)Li1—O1i1.995 (3)
N2—C31.3510 (18)Li1—O32.065 (3)
N3—C31.3431 (18)Li1—O3ii2.201 (3)
N3—H20.8600Li1—Li1i2.900 (5)
N3—H10.8600O3—H320.837 (15)
O1—C71.2515 (17)O3—H310.875 (14)
N1—C2—C3120.87 (11)N2—C5—H5118.6
N1—C2—C7115.10 (11)C6—C5—H5118.6
C3—C2—C7124.03 (11)O1i—Li1—O186.88 (11)
C2—N1—C6118.83 (11)O1i—Li1—O394.05 (12)
C2—N1—Li1111.64 (11)O1—Li1—O3142.73 (18)
C6—N1—Li1129.48 (11)O1i—Li1—N1165.94 (15)
C5—N2—C3117.50 (11)O1—Li1—N179.08 (10)
C3—N3—H2120.0O3—Li1—N196.74 (12)
C3—N3—H1120.0O1i—Li1—O3ii87.61 (12)
H2—N3—H1120.0O1—Li1—O3ii102.21 (14)
C7—O1—Li1i148.32 (12)O3—Li1—O3ii115.07 (14)
C7—O1—Li1118.26 (11)N1—Li1—O3ii95.90 (13)
Li1i—O1—Li193.13 (11)O1i—Li1—Li1i43.49 (8)
O2—C7—O1125.43 (12)O1—Li1—Li1i43.38 (8)
O2—C7—C2118.94 (12)O3—Li1—Li1i126.66 (18)
O1—C7—C2115.63 (11)N1—Li1—Li1i122.46 (16)
N3—C3—N2117.93 (12)O3ii—Li1—Li1i96.72 (16)
N3—C3—C2122.37 (12)Li1—O3—Li1iii115.07 (14)
N2—C3—C2119.69 (12)Li1—O3—H32108.2 (15)
N1—C6—C5120.32 (12)Li1iii—O3—H3294.4 (16)
N1—C6—H6119.8Li1—O3—H31127.7 (15)
C5—C6—H6119.8Li1iii—O3—H31100.2 (15)
N2—C5—C6122.78 (13)H32—O3—H31106.0 (15)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H31···O2iv0.88 (1)1.83 (1)2.7028 (16)175 (2)
O3—H32···O1v0.84 (2)2.54 (2)2.9083 (17)108 (2)
N3—H1···O20.862.082.7229 (17)131
N3—H2···N2vi0.862.303.1278 (19)162

Symmetry codes: (iv) x, −y+3/2, z+1/2; (v) −x+1, −y+2, −z+1; (vi) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2312).

References

  • Kuma (1996). KM-4 Software Kuma Diffraction Ltd, Wrocław, Poland.
  • Kuma (2001). DATAPROC Kuma Diffraction Ltd, Wrocław, Poland.
  • Leciejewicz, J., Ptasiewicz-Bąk, H. & Paluchowska, B. (1997). Pol. J. Chem.71, 1339–1364.
  • Leciejewicz,J., Ptasiewicz-Bąk, H. & Zachara, J. (1998). Pol. J. Chem.72, 1994–1998.
  • Oxford Diffraction (2006). CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Ptasiewicz-Bąk, H. & Leciejewicz, J. (1997). Pol. J. Chem.71, 1350–1358.
  • Ptasiewicz-Bąk, H. & Leciejewicz, J. (1999). Pol. J. Chem.73, 717–725.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tayebee, R., Amani, V. & Khavasi, H. P. (2008). Chin. J. Chem.26, 500–504.
  • Tombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491–m492. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography