PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1743.
Published online 2010 June 23. doi:  10.1107/S1600536810023019
PMCID: PMC3006784

4,5,6,7-Tetra­chloro-2-(2,2,2-trifluoro­eth­yl)isoindoline-1,3-dione

Abstract

In the title compound, C10H2Cl4F3NO2, the isoindoline ring system is almostplanar, the maximum atomic deviation being 0.064 (2) Å. The C—C bond of the ethyl­ene group is twisted with respect to the isoindoline plane by a dihedral angle of 59.58 (12)°. In the crystal, weak inter­molecular C—H(...)F hydrogen bonding links the mol­ecules into supra­molecular chains running along the a axis. A short inter­molecular Cl(...)O contact of 2.950 (3) Å is also observed.

Related literature

The title compound is an inter­mediate in the synthesis of organic electro-luminescent materials, see: Han & Kay (2005 [triangle]). For a related structure, see: Valkonen et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1743-scheme1.jpg

Experimental

Crystal data

  • C10H2Cl4F3NO2
  • M r = 366.93
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1743-efi1.jpg
  • a = 4.943 (4) Å
  • b = 10.759 (9) Å
  • c = 12.130 (11) Å
  • α = 101.373 (19)°
  • β = 101.18 (2)°
  • γ = 92.704 (3)°
  • V = 617.9 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.99 mm−1
  • T = 113 K
  • 0.20 × 0.08 × 0.06 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2001 [triangle]) T min = 0.826, T max = 0.943
  • 5139 measured reflections
  • 2126 independent reflections
  • 2033 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.078
  • S = 1.07
  • 2126 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023019/xu2778sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023019/xu2778Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Major Research Program of Zhejiang Province (NO. 2008 C02007–2) and the Zhejiang Provincial Natural Science Foundation of China (NO. Y307128).

supplementary crystallographic information

Comment

The title compound is a key intermediate in the synthesis of organic electro-luminescent materials. The emission of light by organic molecules exposed to an electric field has been wide investigated in both an academic and industrial context (Han & Kay, 2005).

The molecular structure of the title compound is illustrated in Fig. 1. The isoindole ring system is planar, the maximum atomic deviation being 0.064 (2)Å (for C8 atom). The C9—C10 bond of the ethylene group is twisted with respect to the isoindole ring by a dihedral angle of 59.58 (12)°, which is similar to 60.3 (5)° found in a related compound 2-(2-iodoethyl)isoindole-1,3-dione (Valkonen et al. 2007). Weak intermolecular C—H···F hydrogen bonding is present in the crystal structure (Table 1).

Experimental

An acetic acid solution of tetrachlorophthalic anhydride (28.6 g, 100 mmol) and 2,2,2-trifluoroethylamine (7.99 ml, 100 mmol) was refluxed overnight, and then filtered. The crude produce was recrystallized from ethyl acetate.

Refinement

H atoms were positioned geometrically and refined as riding with C—H = 0.99 Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the molecule of showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C10H2Cl4F3NO2Z = 2
Mr = 366.93F(000) = 360
Triclinic, P1Dx = 1.972 Mg m3
Hall symbol: -P 1Melting point: 477 K
a = 4.943 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.759 (9) ÅCell parameters from 2510 reflections
c = 12.130 (11) Åθ = 1.8–27.9°
α = 101.373 (19)°µ = 0.99 mm1
β = 101.18 (2)°T = 113 K
γ = 92.704 (3)°Prism, colorless
V = 617.9 (9) Å30.20 × 0.08 × 0.06 mm

Data collection

Rigaku Saturn CCD area-detector diffractometer2126 independent reflections
Radiation source: fine-focus sealed tube2033 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 14.63 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω and [var phi] scansh = −5→5
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2001)k = −12→12
Tmin = 0.826, Tmax = 0.943l = −14→11
5139 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0516P)2 + 0.2268P] where P = (Fo2 + 2Fc2)/3
2126 reflections(Δ/σ)max = 0.003
181 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.45684 (8)0.62343 (4)0.10599 (3)0.01714 (14)
Cl20.43932 (10)0.86631 (4)0.29132 (4)0.02492 (14)
Cl30.10966 (10)0.85656 (4)0.48243 (4)0.02680 (15)
Cl4−0.26190 (9)0.61244 (4)0.47757 (4)0.01965 (14)
F10.1532 (2)0.08394 (12)0.15299 (12)0.0368 (3)
F2−0.2343 (3)−0.03074 (10)0.09326 (10)0.0347 (3)
F3−0.1393 (3)0.08654 (11)0.26249 (10)0.0356 (3)
O10.1734 (2)0.34347 (11)0.05198 (10)0.0189 (3)
O2−0.4074 (2)0.34517 (12)0.30361 (11)0.0209 (3)
N1−0.1296 (3)0.31251 (13)0.16870 (12)0.0157 (3)
C10.0657 (3)0.38289 (16)0.13115 (15)0.0145 (3)
C20.1009 (3)0.51129 (16)0.20884 (14)0.0140 (3)
C30.2573 (3)0.61999 (16)0.20684 (14)0.0148 (3)
C40.2506 (3)0.72884 (15)0.29118 (15)0.0165 (4)
C50.0966 (4)0.72557 (16)0.37583 (14)0.0177 (4)
C6−0.0662 (3)0.61525 (16)0.37516 (15)0.0155 (3)
C7−0.0635 (3)0.50918 (16)0.28992 (14)0.0143 (3)
C8−0.2256 (3)0.38237 (16)0.26155 (14)0.0155 (4)
C9−0.2519 (4)0.18735 (16)0.10544 (15)0.0190 (4)
H9A−0.23470.17740.02430.023*
H9B−0.45150.18010.10690.023*
C10−0.1160 (4)0.08224 (17)0.15460 (15)0.0196 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0164 (2)0.0208 (2)0.0167 (2)0.00139 (17)0.00554 (17)0.00765 (17)
Cl20.0304 (3)0.0152 (2)0.0292 (3)−0.00270 (18)0.0068 (2)0.00546 (18)
Cl30.0384 (3)0.0184 (2)0.0217 (3)0.00406 (19)0.0080 (2)−0.00242 (18)
Cl40.0217 (2)0.0254 (2)0.0152 (2)0.00822 (18)0.00803 (17)0.00679 (17)
F10.0242 (6)0.0350 (7)0.0603 (9)0.0079 (5)0.0129 (6)0.0260 (6)
F20.0502 (7)0.0160 (5)0.0319 (7)−0.0055 (5)0.0022 (5)−0.0006 (5)
F30.0617 (8)0.0289 (6)0.0198 (6)0.0048 (6)0.0135 (5)0.0085 (5)
O10.0202 (6)0.0203 (6)0.0168 (6)0.0020 (5)0.0072 (5)0.0022 (5)
O20.0175 (6)0.0244 (7)0.0233 (7)−0.0005 (5)0.0089 (5)0.0066 (5)
N10.0158 (7)0.0148 (7)0.0163 (7)−0.0005 (6)0.0040 (6)0.0024 (6)
C10.0138 (8)0.0155 (8)0.0144 (8)0.0028 (6)0.0005 (6)0.0056 (6)
C20.0129 (8)0.0165 (8)0.0131 (8)0.0041 (6)0.0011 (6)0.0054 (6)
C30.0139 (8)0.0187 (8)0.0131 (8)0.0031 (6)0.0024 (6)0.0066 (6)
C40.0177 (8)0.0144 (8)0.0176 (9)0.0017 (7)0.0006 (7)0.0065 (7)
C50.0218 (9)0.0157 (8)0.0147 (9)0.0070 (7)0.0007 (7)0.0026 (7)
C60.0154 (8)0.0202 (8)0.0127 (8)0.0063 (7)0.0033 (6)0.0062 (7)
C70.0129 (8)0.0174 (8)0.0138 (8)0.0049 (6)0.0020 (6)0.0065 (6)
C80.0148 (8)0.0176 (8)0.0146 (8)0.0030 (6)0.0018 (7)0.0058 (7)
C90.0189 (9)0.0174 (8)0.0183 (9)−0.0035 (7)0.0018 (7)0.0014 (7)
C100.0230 (9)0.0179 (8)0.0178 (9)−0.0037 (7)0.0065 (7)0.0024 (7)

Geometric parameters (Å, °)

Cl1—C31.719 (2)C1—C21.492 (3)
Cl2—C41.711 (2)C2—C31.378 (3)
Cl3—C51.704 (2)C2—C71.395 (3)
Cl4—C61.720 (2)C3—C41.401 (3)
F1—C101.334 (2)C4—C51.396 (3)
F2—C101.334 (2)C5—C61.400 (3)
F3—C101.328 (2)C6—C71.383 (3)
O1—C11.202 (2)C7—C81.492 (3)
O2—C81.205 (2)C9—C101.506 (3)
N1—C11.397 (2)C9—H9A0.9900
N1—C81.402 (2)C9—H9B0.9900
N1—C91.450 (2)
C1—N1—C8113.24 (14)C5—C6—Cl4120.78 (14)
C1—N1—C9122.43 (15)C6—C7—C2121.03 (16)
C8—N1—C9123.58 (14)C6—C7—C8130.65 (16)
O1—C1—N1125.00 (16)C2—C7—C8108.26 (15)
O1—C1—C2130.05 (16)O2—C8—N1125.42 (16)
N1—C1—C2104.95 (15)O2—C8—C7129.62 (16)
C3—C2—C7121.73 (16)N1—C8—C7104.90 (14)
C3—C2—C1129.80 (17)N1—C9—C10112.25 (15)
C7—C2—C1108.46 (15)N1—C9—H9A109.2
C2—C3—C4117.61 (17)C10—C9—H9A109.2
C2—C3—Cl1121.85 (14)N1—C9—H9B109.2
C4—C3—Cl1120.54 (14)C10—C9—H9B109.2
C5—C4—C3120.88 (16)H9A—C9—H9B107.9
C5—C4—Cl2119.90 (13)F3—C10—F1107.19 (15)
C3—C4—Cl2119.21 (14)F3—C10—F2106.91 (15)
C4—C5—C6120.82 (16)F1—C10—F2107.04 (15)
C4—C5—Cl3119.78 (14)F3—C10—C9112.72 (16)
C6—C5—Cl3119.40 (15)F1—C10—C9112.66 (15)
C7—C6—C5117.84 (17)F2—C10—C9109.98 (16)
C7—C6—Cl4121.38 (14)
C8—N1—C1—O1−178.89 (16)Cl3—C5—C6—Cl42.3 (2)
C9—N1—C1—O1−8.4 (3)C5—C6—C7—C21.4 (2)
C8—N1—C1—C20.56 (18)Cl4—C6—C7—C2−178.43 (12)
C9—N1—C1—C2171.02 (14)C5—C6—C7—C8−175.42 (16)
O1—C1—C2—C33.2 (3)Cl4—C6—C7—C84.7 (3)
N1—C1—C2—C3−176.17 (16)C3—C2—C7—C6−3.0 (2)
O1—C1—C2—C7−178.26 (17)C1—C2—C7—C6178.38 (14)
N1—C1—C2—C72.33 (17)C3—C2—C7—C8174.49 (15)
C7—C2—C3—C41.3 (2)C1—C2—C7—C8−4.16 (18)
C1—C2—C3—C4179.68 (15)C1—N1—C8—O2174.66 (16)
C7—C2—C3—Cl1−179.20 (12)C9—N1—C8—O24.3 (3)
C1—C2—C3—Cl1−0.9 (3)C1—N1—C8—C7−3.00 (17)
C2—C3—C4—C51.7 (2)C9—N1—C8—C7−173.33 (14)
Cl1—C3—C4—C5−177.73 (12)C6—C7—C8—O24.0 (3)
C2—C3—C4—Cl2−179.49 (12)C2—C7—C8—O2−173.14 (17)
Cl1—C3—C4—Cl21.0 (2)C6—C7—C8—N1−178.48 (17)
C3—C4—C5—C6−3.3 (3)C2—C7—C8—N14.39 (17)
Cl2—C4—C5—C6177.95 (13)C1—N1—C9—C1099.37 (19)
C3—C4—C5—Cl3175.92 (13)C8—N1—C9—C10−91.2 (2)
Cl2—C4—C5—Cl3−2.8 (2)N1—C9—C10—F361.1 (2)
C4—C5—C6—C71.7 (2)N1—C9—C10—F1−60.4 (2)
Cl3—C5—C6—C7−177.55 (12)N1—C9—C10—F2−179.68 (14)
C4—C5—C6—Cl4−178.51 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9B···F1i0.992.383.289 (4)152

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2778).

References

  • Han, K. J. & Kay, K. Y. (2005). J. Korean Chem. Soc 49, 233–238.
  • Rigaku/MSC (2001). CrystalClear Rigaku/MSC, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Valkonen, A., Lahtinen, T. & Rissanen, K. (2007). Acta Cryst. E63, o472–o473.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography